首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dihydrido-olefin complex OsH(2)(eta(2)-CH(2)=CHEt)(CO)(P(i)Pr(3))(2) (2) reacts with H(2)SiPh(2) to give OsH(3)(SiHPh(2))(CO)(P(i)Pr(3))(2) (3). The molecular structure of 3 has been determined by X-ray diffraction (monoclinic, space group P2(1)/c with a = 16.375(2) ?, b = 11.670(1) ?, c =18.806(2) ?, beta = 107.67(1) degrees, and Z = 4) together with ab initio calculations on the model compound OsH(3)(SiH(3))(CO)(PH(3))(2). The coordination geometry around the osmium center can be rationalized as a heavily distorted pentagonal bipyramid with one hydrido ligand and the carbonyl group in the axial positions. The two other hydrido ligands lie in the equatorial plane, one between the phosphine ligands and the other between the SiHPh(2) group and one of the phosphine ligands. Complex 3 can also be prepared by reaction of OsH(eta(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (4) with H(2)SiPh(2). Similarly, the treatment of 4 with HSiPh(3) affords OsH(3)(SiPh(3))(CO)(P(i)Pr(3))(2) (5), while the addition of H(3)SiPh to 4 in methanol yields OsH(3){Si(OMe)(2)Ph}(CO)(P(i)Pr(3))(2) (6). Complex 2 also reacts with HGeR(3) and HSnR(3) to give OsH(3)(GeR(3))(CO)(P(i)Pr(3))(2) (GeR(3) = GeHPh(2) (7), GePh(3) (8), GeEt(3) (9)) and OsH(3)(SnR(3))(CO)(P(i)Pr(3))(2) (R = Ph (10), (n)Bu (11)), respectively. In solution, compounds 3 and 5-11 are fluxional and display similar (1)H and (31)P{(1)H} NMR spectra, suggesting that they possess a similar arrangement of ligands around the osmium atom.  相似文献   

2.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

3.
The reactivity of amidinato complexes of molybdenum and tungsten bearing pyridine as a labile ligand, [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)(pyridine)](M = Mo; 1-Mo, M = W; 1-W), toward bidentate ligands such as 1,10-phenanthroline (phen) and 1,2-bis(diphenylphosphino)ethane (dppe) was investigated. The reaction of 1 with phen at ambient temperature resulted in the formation of monodentate amidinato complexes, [M(eta(3)-allyl)(eta(1)-amidinato)(CO)(2)(eta(2)-phen)](M = Mo; 2-Mo, M = W; 2-W), which has pseudo-octahedral geometry with the amidinato ligand coordinated to the metal in an eta(1)-fashion. The phen ligand was located coplanar with two CO ligands and the eta(1)-amidinato ligand was positioned trans to the eta(3)-allyl ligand. In solution, both complexes 2-Mo and 2-W showed fluxionality, and complex 2-Mo afforded allylamidine (3) on heating in solution. In the reaction of 1 with dppe at ambient temperature, the simple substitution reaction took place to give dppe-bridged binuclear complexes [{M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)}(2)(mu-dppe)](M = Mo; 5-Mo, M = W; 5-W), whereas mononuclear monocarbonyl complexes [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(eta(2)-dppe)](M = Mo; 6-Mo, M = W; 6-W) were obtained under acetonitrile- or toluene-refluxing conditions. Mononuclear complex 6 was also obtained by the reaction of binuclear complex 5 with 0.5 equivalents of dppe under refluxing in acetonitrile or in toluene. The X-ray analyses and variable-temperature (31)P NMR spectroscopy of complex 6 indicated the existence of the rotational isomers of the eta(3)-allyl ligand, i.e., endo and exo forms, with respect to the carbonyl ligand. The different reactivity of complex 1 toward phen and dppe seems to have come from the difference in the pi-acceptability of each bidentate ligand.  相似文献   

4.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

5.
Cationic iminoacyl-carbonyl tungsten complexes of the type [W(CO) (eta (2)-MeNCR)(acac) 2] (+) (acac = acetylacetonate; R = Ph ( 1a), Me ( 1b)) easily undergo thermal substitution of CO with two-electron donors to yield [W(L)(eta (2)-MeNCR)(acac) 2] (+) (L = tert-butylisonitrile [R = Ph ( 2a), Me ( 2b)], 2,6-dimethylphenylisonitrile [R = Me ( 2c)], triphenylphosphine [R = Ph ( 3a), Me ( 3c)], and tricyclohexylphosphine [R = Ph ( 3b)]). Tricyclohexylphosphine complex 3b exhibits rapid, reversible phosphine ligand exchange at room temperature on the NMR time scale. Photolytic replacement of carbon monoxide with either phenylacetylene or 2-butyne occurs efficiently to form [W(eta (2)-alkyne)(eta (2)-MeNCR)(acac) 2] (+) complexes ( 5a- d) with a variable electron donor eta (2)-alkyne paired with the eta (2)-iminoacyl ligand in the W(II) coordination sphere. PMe 3 adds to 1a or 5b to form [W(L)(eta (2)-MeNC(PMe 3)Ph)(acac) 2] (+) [L = CO ( 4), MeCCMe ( 6)] via nucleophilic attack at the iminoacyl carbon. Addition of Na[HB(OMe) 3] to 5b yields W(eta (2)-MeCCMe)(eta (2)-MeNCHPh)(acac) 2, 8, which exhibits alkyne rotation on the NMR time scale. Addition of MeOTf to 8 places a second methyl group on the nitrogen atom to form an unusual cationic eta (2)-iminium complex [W(eta (2)-MeCCMe)(eta (2)-Me 2NCHPh)(acac) 2][OTf] ( 9[OTf], OTf = SO 3CF 3). X-ray structures of 2,6-dimethylphenylisonitrile complex 2c[BAr' 4 ], tricyclohexylphosphine complex 3b[BAr' 4 ], and phenylacetylene complex 5a[BAr' 4 ] confirm replacement of CO by these ligands in the [W(L)(eta (2)-MeNCR)(acac) 2] (+) products. X-ray structures of alkyne-imine complexes 6[BAr' 4 ] and 8 show products resulting from nucleophilic addition at the iminoacyl carbon, and the X-ray structure of 9[BAr' 4 ] reflects methylation at the imine nitrogen to form a rare eta (2)-iminium ligand.  相似文献   

6.
Hydride complexes [FeH(N-N)P3]BPh4 (1, 2) [N-N = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen); P = P(OEt)4, PPh(OEt)2, and PPh2OEt] were prepared by allowing FeCl2(N-N) to react with phosphite in the presence of NaBH4. The hydrides [FeH(bpy)2P]BPh4 (3) [P = P(OEt)3 and PPh(OEt)2] were prepared by reacting the tris(2,2'-bipyridine) [Fe(bpy)3]Cl2.5H2O complex with the appropriate phosphite in the presence of NaBH4. The protonation reaction of 1 and 2 with acid was studied and led to thermally unstable (above -20 degrees C) dihydrogen [Fe(eta2-H2)(N-N)P3]2+ (4, 5) derivatives. The presence of the H2 ligand is indicated by short T(1 min) values (3.1-3.6 ms) and by J(HD) measurements (31.2-32.5 Hz) of the partially deuterated derivatives. Carbonyl [Fe(CO)(bpy)[P(OEt)3]3](BPh4)2 (6) and nitrile [Fe(CH3CN)(N-N)P3](BPh4)2 (7, 8) [N-N = bpy, phen; P = P(OEt)3 and PPh(OEt)2] complexes were prepared by substituting the H2 ligand in the eta2-H2 4, 5 derivatives. Aryldiazene complexes [Fe(ArN=NH)(N-N)P3](BPh4)2 (9, 10, 11) (Ar = C6H5, 4-CH3C6H4) were also obtained by allowing hydride [FeH(N-N)P3]BPh4 derivatives to react with aryldiazonium cations in CH2Cl2 at low temperature.  相似文献   

7.
Treatment of the hydrido(dihydrogen) compound [RuHCl(H2)(PCy3)2] 1 with alkynes RC[triple bond, length as m-dash]CH (R=H, Ph) afforded the hydrido(vinylidene) complexes [RuHCl(=C=CHR)(PCy3)2] 2, 3 which react with HCl or [HPCy3]Cl to give the corresponding Grubbs-type ruthenium carbenes [RuCl2(=CHCH2R)(PCy3)2] 4, 5. The reaction of 2 (R=H) with DCl, or D2O in the presence of chloride sources, led to the formation of [RuCl2(=CHCH2D)(PCy3)2] 4-d1. Based on these observations, a one-pot synthesis of compounds 4 and 5 was developed using RuCl3.3H2O as the starting material. The hydrido(vinylidene) derivative 2 reacted with CF3CO2H and HCN at low temperatures to yield the carbene complexes [RuCl(X)(=CHCH3)(PCy3)2] 6, 7, of which 7 (X=CN) was characterized crystallographically. Salt metathesis of 2 with CF3CO2K and KI led to the formation of [RuH(X)(=C=CH2)(PCy3)2] 8, 9. The bis(trifluoracetato) and the diiodo compounds [RuX2(=CHCH3)(PCy3)2] 10, 11 as well as the new phosphine P(thp)3 12 (thp=4-tetrahydropyranyl) and the corresponding complex [RuCl2(=CHCH3){P(thp)3}2] 14 were also prepared. The catalytic activity of the ruthenium carbenes 4-7, 10, 11 and 14 in the olefin cross-metathesis of cyclopentene and allyl alcohol was investigated.  相似文献   

8.
The photochemical reaction of Ru2(S2C3H6)(CO)4(PCy3)2 (1) and H2 gives the dihydride Ru2(S2C3H6)(mu-H)(H)(CO)3(PCy3)2 (2). NMR and crystallographic studies reveal mutually trans basal phosphine ligands and both bridging and terminal hydrides. Ru2(S2C2H4)(CO)4(PCy3)2 behaves similarly. Other HX substrates undergo photoaddition to 1, affording Ru2(S2C3H6)(mu-H)(X)(CO)3(PCy3)2 for X = OTs (3a), Cl (3b), and SPh (3c). Treatment of Ru2(S2C3H6)(mu-H)(H)(CO)3(PCy3)2 with [H(OEt2)]BArF4 (ArF = B(C6H3-3,5-(CF3)2) in CD2Cl2 gives [Ru2(S2C3H6)(mu-H)(CO)3(PCy3)2(H2)]+ (4), which catalyzes H2-D2 exchange. The reaction of 2 with [D(OEt2)]BArF4 gave [Ru2(S2C3H6)(mu-H)(CO)3(PCy3)2(HD)]+ (JH-D = 31 Hz). These studies provide the first models for the Fe-only hydrogenases that bear dihydrogen and terminal hydrido ligands.  相似文献   

9.
The reactivity of [HMCo3(CO)12] and [Et4N][MCo3(CO)12] (M = Fe, Ru) toward phosphine selenides such as Ph3PSe, Ph2P(Se)CH2PPh2, Ph2(2-C5H4N)PSe, Ph2(2-C4H3S)PSe, and Ph2[(2-C5H4N)(2-C4H2S)]PSe has been studied with the aim to obtain new selenido-carbonyl bimetallic clusters. The reactions of the hydrido clusters give two main classes of products: (i) triangular clusters with a mu3-Se capping ligand of the type [MCo2(mu3-Se)(CO)(9-x)L(y)] resulting from the selenium transfer (x = y = 1, 2, with L = monodentate ligand; x = 2, 4, and y = 1, 2, with L = bidentate ligand) (M = Fe, Ru) and (ii) tetranuclear clusters of the type [HMCo3(CO)12xL(y)] obtained by simple substitution of axial, Co-bound carbonyl groups by the deselenized phosphine ligand. The crystal structures of [HRuCo3(CO)7(mu-CO)3(mu-dppy)] (1), [MCo2(mu3-Se)(CO)7(mu-dppy)] (M = Fe (16) or Ru (2)), and [RuCo2(mu3-Se)(CO)7(mu-dppm)] (12) are reported [dppy = Ph2(2-C5H4N)P, dppm = Ph2PCH2PPh2]. Clusters 2, 12, and 16 are the first examples of trinuclear bimetallic selenido clusters substituted by phosphines. Their core consists of metal triangles capped by a mu3-selenium atom with the bidentate ligand bridging two metals in equatorial positions. The core of cluster 1 consists of a RuCo3 tetrahedron, each Co-Co bond being bridged by a carbonyl group and one further bridged by a dppy ligand. The coordination of dppy in a pseudoaxial position causes the migration of the hydride ligand to the Ru(mu-H)Co edge. In contrast to the reactions of the hydrido clusters, those with the anionic clusters [MCo3(CO)12]- do not lead to Se transfer from phosphorus to the cluster but only to CO substitution by the deselenized phosphine.  相似文献   

10.
Although the pentacoordinated complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(cod)] (1; pz=pyrazolyl, cod=1,5-cyclooctadiene), isolated from the reaction of [{Ir(mu-Cl)(cod)}(2)] with [Li(tmen)][B(allyl)(CH(2)PPh(2))- (pz)(2)] (tmen=N,N,N',N'-tetramethylethane-1,2-diamine), shows behavior similar to that of the related hydridotris(pyrazolyl)borate complex, the carbonyl derivatives behave in a quite different way. On carbonylation of 1, the metal--metal-bonded complex [(Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}CO)(2)(mu-CO)] (2) that results has a single ketonic carbonyl bridge. This bridging carbonyl is labile such that upon treatment of 2 with PMe(3) the pentacoordinated Ir(I) complex [Ir(CO){(pz)B(eta(2)-CH(2)CH=CH(2))(CH(2)PPh(2))(pz)}(PMe(3))] (3) was isolated. Complex 3 shows a unique fac coordination of the hybrid ligand with the allyl group eta(2)-bonded to the metal in the equatorial plane of a distorted trigonal bipyramid with one pyrazolate group remaining uncoordinated. This unusual feature can be rationalized on the basis of the electron-rich nature of the metal center. The related complex [Ir(CO){(pz)B(eta(2)-CH(2)CH=CH(2))(CH(2)PPh(2))(pz)}(PPh(3))] (4) was found to exist in solution as a temperature-dependent equilibrium between the cis-pentacoordinated and trans square planar isomers with respect to the phosphorus donor atoms. Protonation of 3 with different acids is selective at the iridium center and gives the cationic hydrides [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(CO)H(PMe(3))]X (X=BF(4) (5), MeCO(2) (6), and Cl (7)). Complex 7 further reacts with HCl to generate the unexpected product [Ir(CO)Cl{(Hpz)B(CH(2)PPh(2))(pz)CH(2)CH(Me)}(PMe(3))]Cl (9; Hpz=protonated pyrazolyl group) formed by the insertion of the hydride into the Ir-(eta(2)-allyl) bond. In contrast, protonation of complex 4 with HCl stops at the hydrido complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(CO)H(PPh(3))]Cl (8). X-ray diffraction studies carried out on complexes 2, 3, and 9 show the versatility of the hybrid scorpionate ligand in its coordination.  相似文献   

11.
An activated side-on-bound ansa-zirconocene dinitrogen complex, [Me2Si(eta5-C5Me4)(eta5-C5H3-3-tBu)Zr]2(mu2,eta2,eta2-N2), has been prepared by sodium amalgam reduction of the corresponding dichloride precursor under an atmosphere of N2. Both solution spectroscopic and X-ray diffraction data establish diastereoselective formation of the syn homochiral dizirconium dimer. Addition of 1 atm of H2 resulted in rapid hydrogenation of the N2 ligand to yield one diastereomer of the hydrido zirconocene diazenido complex. Kinetic measurements have yielded the barrier for H2 addition and in combination with isotopic labeling studies are consistent with a 1,2-addition pathway. In the absence of H2, the hydrido zirconocene diazenido product undergoes swift diazene dehydrogenation to yield an unusual hydrido zirconocene dinitrogen complex. The N=N bond length of 1.253(5) A determined by X-ray crystallography indicates that the side-on-bound N2 ligand is best described as a two-electron reduced [N2]2- fragment. Comparing the barrier for deuterium exchange with [Me2Si(eta5-C5Me4)(eta5-C5H3-3-tBu)ZrH]2(mu2,eta2,eta2-N2H2) to diazene dehydrogenation is consistent with rapid 1,2-elimination of dihydrogen followed by rate-determining hydride migration to the zirconium. This mechanistic proposal is also corroborated by H2 inhibition and the observation of a normal, primary kinetic isotope effect for dehydrogenation.  相似文献   

12.
This paper reports the isolation and structural determination of a water-soluble hydride complex [Cp*Ir(III)(bpy)H](+) (1, Cp* = eta(5)-C(5)Me(5), bpy = 2,2'-bipyridine) that serves as a robust and highly active catalyst for acid-catalyzed transfer hydrogenations of carbonyl compounds at pH 2.0-3.0 at 70 degrees C. The catalyst 1 was synthesized from the reaction of a precatalyst [Cp*Ir(III)(bpy)(OH(2))](2+) (2) with hydrogen donors HCOOX (X = H or Na) in H(2)O under controlled conditions (2.0 < pH < 6.0, 25 degrees C) which avoid protonation of the hydrido ligand of 1 below pH ca. 1.0 and deprotonation of the aqua ligand of 2 above pH ca. 6.0 (pK(a) value of 2 = 6.6). X-ray analysis shows that complex 1 adopts a distorted octahedral geometry with the Ir atom coordinated by one eta(5)-Cp*, one bidentate bpy, and one terminal hydrido ligand that occupies a bond position. The isolation of 1 allowed us to investigate the robust ability of 1 in acidic media and reducing ability of 1 in the reaction with carbonyl compounds under both stoichiometric and catalytic conditions. The rate of the acid-catalyzed transfer hydrogenation is drastically dependent on pH of the solution, reaction temperature, and concentration of HCOOH. The effect of pH on the rate of the transfer hydrogenation is rationalized by the pH-dependent formation of 1 and activation process of the carbonyl compounds by protons. High turnover frequencies of the acid-catalyzed transfer hydrogenations at pH 2.0-3.0 are ascribed not only to nucleophilicity of 1 toward the carbonyl groups activated by protons but also to a protonic character of the hydrido ligand of 1 that inhibits the protonation of the hydrido ligand.  相似文献   

13.
Photochemical ligand substitution of fac-[Re(X2bpy)(CO)3(PR3)]+ (X2bpy = 4,4'-X2-2,2'-bipyridine; X = Me, H, CF3; R = OEt, Ph) with acetonitrile quantitatively gave a new class of biscarbonyl complexes, cis,trans[Re(X2bpy)(CO)2(PR3)(MeCN)]+, coordinated with four different kinds of ligands. Similarly, other biscarbonylrhenium complexes, cis,trans-[Re(X2bpy)(CO)2(PR3)(Y)]n+ (n = 0, Y = Cl-; n = 1, Y = pyridine, PR'3), were synthesized in good yields via photochemical ligand substitution reactions. The structure of cis,trans-[Re(Me2bpy)(CO)2[P(OEt)3](PPh3)](PF6) was determined by X-ray analysis. Crystal data: C38H42N2O5F6P3Re, monoclinic, P2(1/a), a = 11.592(1) A, b = 30.953(4) A, c = 11.799(2) A, V = 4221.6(1) A3, Z = 4, 7813 reflections, R = 0.066. The biscarbonyl complexes with two phosphorus ligands were strongly emissive from their 3MLCT state with lifetimes of 20-640 ns in fluid solutions at room temperature. Only weak or no emission was observed in the cases Y = Cl-, MeCN, and pyridine. Electrochemical reduction of the biscarbonyl complexes with Y = Cl- and pyridine in MeCN resulted in efficient ligand substitution to give the solvento complexes cis,trans-[Re(X2bpy)(CO)2(PR3)(MeCN)]+.  相似文献   

14.
Disulfide-bridged dinuclear ruthenium complexes [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-X)(mu,eta(2)-S(2))][ZnX(3)(MeCN)] (X = Cl (2), Br (4)), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(2)(mu,eta(1)-S(2))](CF(3)SO(3)) (5), [[Ru(MeCN)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(2)-S(2))](BF(4)) (6), and [[Ru(MeCN)(2)(P(OMe)(3))(2)](2)(mu-Cl)(mu,eta(1)-S(2))](CF(3)SO(3))(3) (7) were synthesized, and the crystal structures of 2 and 4 were determined. Crystal data: 2, triclinic, P1, a = 15.921(4) A, b = 17.484(4) A, c = 8.774(2) A, alpha = 103.14(2) degrees, beta = 102.30(2) degrees, gamma = 109.68(2) degrees, V = 2124(1) A(3), Z = 2, R (R(w)) = 0.055 (0.074); 4, triclinic, P1 a = 15.943(4) A, b = 17.703(4) A, c = 8.883(1) A, alpha = 102.96(2) degrees, beta = 102.02(2) degrees, gamma = 109.10(2) degrees, V = 2198.4(9) A(3), Z = 2, R (R(w)) = 0.048 (0.067). Complexes 2 and 4 were obtained by reduction of the disulfide-bridged ruthenium complexes [[RuX(P(OMe)(3))(2)](2)(mu-X)(2)(mu,eta(1)-S(2))] (X = Cl (1), Br (3)) with zinc, respectively. Complex 5 was synthesized by oxidation of 2 with AgCF(3)SO(3). Through these redox steps, the coordination mode of the disulfide ligand was converted from mu,eta(1) in 1 and 3 to mu,eta(2) in 2 and 4 and further reverted to mu,eta(1) in 5. Electrochemical studies of 6 indicated that similar conversion of the coordination mode occurs also in electrochemical redox reactions.  相似文献   

15.
The reaction of the in situ generated cyclooctene iridium(I) derivative trans-[IrCl(C8H14)(PiPr3)2] with benzene at 80 degrees C gave a mixture of the five-coordinate dihydrido and hydrido(phenyl) iridium(III) complexes [IrH2(Cl)(PiPr3)2] 2 and [IrH(C6H5)(Cl)(PiPr3)2] 3 in the ratio of about 1 : 2. The chloro- and fluoro-substituted arenes C6H5X (X = Cl, F), C6H4F2 and C6H4F(CH3) reacted also by C-H activation to afford the corresponding aryl(hydrido) iridium(III) derivatives [IrH(C6H4X)(Cl)(PiPr3)2] 7, 8, [IrH(C6H3F2)(Cl)(PiPr3)2] 9-11 and [IrH[C6H3F(CH3)](Cl)(PiPr3)2] 12, 13, respectively. The formation of isomeric mixtures had been detected by 1H, 13C, 19F and 31P NMR spectroscopy. Treatment of 3 and 7-13 with CO gave the octahedral carbonyl iridium(III) complexes [IrH(C6H3XX')(Cl)(CO)(PiPr3)2] 5, 14-20 without the elimination of the arene. The reactions of trans-[IrCl(C8H14)(PiPr3)2] with aryl ketones C6H5C(O)R (R = Me, Ph), aryl ketoximes C6H5C(NOH)R (R = Me, Ph) and benzaloxime C6H5C(NOH)H resulted in the formation of six-coordinate aryl(hydrido) iridium(III) compounds 21-25 with the aryl ligand coordinated in a bidentate kappa2-C,O or kappa2-C,N fashion. With C6H5C(O)NH2 as the substrate, the two isomers [IrH[kappa2-N,O-NHC(O)C6H5](Cl)(PiPr3)2] 26 and [IrH[kappa2-C,O-C6H4C(O)NH2](Cl)(PiPr3)2] 27 were prepared stepwise. Treatment of trans-[IrCl(C8H14)(PiPr3)2] with benzoic acid gave the benzoato(hydrido) complex [IrH[kappa2-O,O-O2CC6H5](Cl)(PiPr3)2] 29 which did not rearrange to the kappa2-C,O isomer.  相似文献   

16.
The reactions of M(CO)5X (M = Mn, Re; X = Cl, Br) with (Ph2PCH2)3CCH3 (P3) and (Ph2P(CH2)2)3P (P3P') are investigated, and the products are characterized by IR, NMR (31P and 13C), and electrospray mass spectrometric (ESMS) techniques. With P3, the major products are fac-M(CO)3(eta 2-P3)X (syn and anti isomers) and cis,fac-M(CO)2(eta 3-P3)X, and with P3P', the major product for each metal is cis,mer-M(CO)2(eta 3-P3P')X, but cis-[M(CO)2(eta 4-P3P')]X and fac-[Re(CO)3(eta 3-P3P')]X are also characterized. Addition of MeI to those complexes containing pendant phosphine groups produces the corresponding phosphonium cations without affecting the remainder of the molecule. On the voltammetric time scale, electrochemical oxidation of cis,fac-Mn(CO)2(eta 3-P3)X yields the corresponding 17e cation cis,fac-[Mn(CO)2(eta 3-P3)X]+, but on the longer time scale of exhaustive electrolysis or chemical oxidation, the product is fac-[Mn(CO)3(eta 3-P3)]+. In contrast, the rhenium cation cis,fac-[Re(CO)2(eta 3-P3)X]+ is stable on the synthetic time scale, but upon oxidation of cis,fac-Re(CO)2(eta 3-P3)X with NOBF4, the final product is the 18e [Re(CO)(NO)(eta 3-P3)X]+. cis,mer-Mn(CO)2(eta 3-P3P')X is reversibly oxidized to cis,mer-[Mn(CO)2(eta 3-P3P')X]+ on the voltammetric time scale, but on the longer synthetic time scale, the product isomerizes to trans-[Mn(CO)2(eta 3-P3P')X]+, which can be reduced to trans-Mn(CO)2(eta 3-P3P')X. Upon voltammetric oxidation, the corresponding rhenium complexes show an initial irreversible response associated with the pendant phosphine group prior to the reversible oxidation of the metal on the synthetic time scale; spectroscopic data indicate formation of cis,mer-Re(CO)2(eta 3-P3P'O)X. The complex cis,mer-[Re(CO)2(eta 3-P3P'Me)X]+ shows only the reversible metal oxidation response. ESMS data are obtained directly for the methylated cationic complexes, and neutral complexes are either oxidized or adducted with sodium ions to produce cationic species.  相似文献   

17.
The reactions of the hydrido compounds [RuHCl(CO)(L)2][L = PiPr3 (1), PCy3 (2)] with HC(triple bond)CR (R = H, Ph, tBu) afforded by insertion of the alkyne into the Ru-H bond the corresponding vinyl complexes [RuCl(CHCHR)(CO)(L)2], 3-8, which upon protonation with HBF4 gave the cationic five-coordinated ruthenium carbenes [RuCl(CHCH2R)(CO)(L)2]BF4, 9-14. Subsequent reactions of the carbene complexes with PR3(R = Me, iPr) and CH3CN led either to deprotonation and re-generation of the vinyl compounds or to cleavage of the ruthenium-carbene bond and the formation of the six-coordinated complexes [RuCl(CO)(CH3CN)2(PiPr3)2]BF4, 17, and [RuH(CO)(CH3CN)2(PiPr3)2]X, 18a,b. The acetato derivative [RuH(2-O2CCH3)(CO)(PCy3)2], 19, also reacted with acetylene and phenylacetylene by insertion to yield the related vinyl complexes [Ru(CHCHR)(kappa2-O2CCH3)(CO)(PCy3)2], 20, 21, of which that with R = H was protonated with HBF4 to yield the corresponding cationic ruthenium carbene 22. With [RuHCl(H2)(PCy3)2], 25, as the starting material, the five-coordinated chloro(hydrido)ruthenium(II) compounds [RuHCl(PCy3)(dppf)], 26(dppf = [Fe(eta5-C5H4PPh2)2]), [RuHCl[Sb(CH2Ph)3](PCy3)2], 27, and [RuHCl(CH3CN)(PCy3)2], 30, were prepared. The reactions of 27 with HCCR (R = H, Ph) gave the hydrido(vinylidene) complexes [RuHCl(CCHR)(PCy3)2], 28 and 29, whereas treatment of 30 with HC(triple bond)CPh afforded the vinyl compound [RuCl(CHCHPh)(CH3CN)(PCy3)2], 31. The molecular structures of 11(R = tBu, L = PiPr3) and 26 were determined crystallographically.  相似文献   

18.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

19.
Alkoxo complexes [Re(OR)(CO)(3)(N-N)] (R=Me, Et, tBu; N-N=2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'bipyridine (bipy'), 1,10-phenanthroline (phen)) and [M(OMe)(eta(3)-allyl)(CO)(2)(phen)] (M=Mo, W) have been synthesized in good yields and using mild conditions by the reaction of sodium alkoxides with [Re(OTf)(CO)(3)(N-N)] and [MCl(eta(3)-allyl)(CO)(2)(phen)] precursors. These have been characterized by IR and NMR spectroscopy as well as by X-ray diffraction for [W(OMe)(eta(3)-allyl)(CO)(2)(phen)] (10). The reactions of the molybdenum and rhenium alkoxo complexes with isocyanates, R'NCO, yield [L(n)M[N(R')C(O)OR]] complexes; the carbamate ligand, which results from an R'NCO insertion into the Mbond;OR bond, is monodentate through the nitrogen atom. The solid-state structures of Mo and Re examples have been determined by X-ray diffraction. The geometry around the carbamate nitrogen of these compounds is planar, and the distances indicate delocalization of the nitrogen lone pair involving mainly the carbonyl groups. Experiments carried out with the Re complexes showed that aryl isocyanates are more reactive than their alkyl counterparts, and that bulky R' groups led to slow rates of insertion. Insertion reactions were also observed with isothiocyanates, although here it is the Sbond;C bond that inserts into the Mbond;OR bond, and the resulting ligand is bound to the metal by sulfur. Competition experiments with the Re compounds indicate that isocyanates are more reactive than isothiocyanates towards the Rebond;OR bonds. Tetracyanoethylene inserts into the Rebond;OMe bond of [Re(OMe)(CO)(3)(bipy')], forming a complex with a 2-methoxytetracyanoethyl ligand; the structure of which was determined by X-ray diffraction. The formation of the xanthato complex [Re(SC(S)OtBu)(CO)(3)(bipy)] (20) by reaction of [Re(OTf)(CO)(3)(bipy)] with CS(2) and NaOtBu, but not by the reaction of CS(2) and [Re(OtBu)(CO)(3)(bipy)] (5 a), suggests that the insertion reactions do not take place by ionization of the alkoxo complexes to give the free alkoxide ion.  相似文献   

20.
The coordination behavior of [[CpMo(CO)(2)}(2)(mu,eta(2)-Sb(2))] (1; Cp = cyclopentadiene) toward Cu(I) was investigated. Its reaction with CuX (X = Br, Cl, and I) produced oligomers or polymers of the general formula [[CpMo(CO)(2)](2)(mu,eta(2)-Sb(2))(mu-CuX)](n). While 2 (X = Cl, n = 2) and 3 (X = Br, n = 2) proved to be halogen-bridged dimers in both solution and solid state, the molecules of 4 (X = I, n = infinity) self-assembled in the crystal forming a linear polymer with a Cu-I skeleton supported by Sb-Cu bonds. The reaction of 1 with Cu[GaCl(4)] resulted in the formation of the ionic complex [[CpMo(CO)(2)](2)(mu,eta(2)-Sb(2))](4)Cu(2)[GaCl(4)](2) (5). Its dication contains four [[CpMo(CO)(2)](2)(mu,eta(2)-Sb(2))] ligands arranged around a Cu-Cu dumbbell. All new compounds were characterized using IR, electrospray ionization mass spectrometry, (1)H NMR, elemental analysis, and single-crystal X-ray diffraction. The ligand was oxidized by both silver(I) and copper(II), and a cyclovoltammetric study revealed that 1 suffered irreversible reduction and oxidation in a dichloromethane solution at -2.04 and 0.10 V, respectively, versus ferrocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号