首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We proposed an optical measurement method for determination of flexoelectric polarisation change in liquid crystals (LCs), which can be induced in highly distorted LC geometries. A hybrid-aligned nematic LC (NLC) mode was introduced to evaluate the direction and magnitude of the flexoelectric polarisation. We measured the DC offset amounts for equivalent brightness levels between forward and reverse bias vertical electric fields to estimate the sign and magnitude of es?eb of flexoelectric coefficients. Additionally, the optical incident angle (αmax) for the maximum effective birefringence was investigated to predict the depth distribution of the LC director affecting the magnitude of the flexoelectric polarisation. The relationship between the variations of the DC offset and αmax by the flexoelectric polarisation changes was examined using the NLC mixtures doped with three selected bent-core LCs.  相似文献   

2.
The present investigation is focused on to find out the role of TiO2 nanoparticles (NPs) on altering the dielectric and electro-optical parameters of nematic liquid crystal (NLC). In addition to this, we also optimized the concentration of dopant (0.25 wt%) for a saturation value of permittivity and dielectric anisotropy in the doped system. Dielectric spectroscopy has been performed with the variation of frequency and temperature to investigate the various dielectric parameters, which demonstrate that the investigated NLC is of positive dielectric anisotropy; the observed result shows a decrement in the value of relative permittivity and dielectric anisotropy; however, the permittivity value increases for higher concentration of dopant but remains less than that of pure NLC. Electro-optical measurements have also been performed to compute the optical response of pure and dispersed NLC. It is found that optical response decreases for the NP-doped systems. This optimized concentration of NPs in NLC matrix can have various credential applications in the field of active matrix display and holography.  相似文献   

3.
In this article, a newly synthesised ferroelectric liquid crystal (FLC) material, namely LAHS 22, has been characterised. The characterisation of the FLC material has been performed using dielectric relaxation spectroscopy, differential scanning calorimetry and polarisation optical microscopy. We observed an enhancement in the dielectric and electro-optical properties of the FLC material by incorporating gold nanoparticles (GNPs)-decorated multiwalled carbon nanotubes (MWCNTs). The GNPs-decorated MWCNTs cause an increment in dielectric dispersion (up to kHz), absorption, spontaneous polarisation and rotational viscosity of the FLC material. The pure and GNPs-decorated MWCNTs doped FLC cells were analysed by means of various dielectric spectroscopic and optical measurements. The observed enhancement in the dielectric and electro-optical properties of the FLC material has also been studied with concentration of GNPs-decorated MWCNTs in FLC material. The GNPs-decorated MWCNTs/FLC composites are not only of fundamental importance, but also useful materials for device applications such as liquid crystal displays and memory devices.  相似文献   

4.
We report the enhancement in the molecular ordering of ferroelectric liquid crystal (FLC) doped with CdSe/ZnSe graded core/shell (CZ) quantum dots (QDs) by using optical methods. Significant decrease in operating voltage and enhancement in optical brightness are assigned to the large primary order parameter (θ) and hence anchoring of FLC molecules by CZ QDs. The enhancement in photoluminescence is conjectured to be due to an increase in molecular alignment yielding higher absorption which is confirmed by excitation spectra. These observations would definitely offer a promising tool to get superior core/shell QD incorporated FLC-based display devices.  相似文献   

5.
In the present study, magnetic nanoparticles (NP, nickel ferrite) in different concentrations into ferroelectric liquid crystal (FLC) mixture have been prepared and studied. The effect of nickel ferrite concentration on the electro-optic, dielectric and optical properties of FLC mixture has been studied and discussed. An improvement in spontaneous polarization, response time in nickel ferrite-FLC-doped samples compared to FLC is observed and explained on the basis of dipole moment and anchoring phenomena. The Goldstone mode (GM) is detected in all samples and follows a Debye-type relaxation behaviour. A twofold increase in relaxation frequency for the doped sample rather than the pure sample has been observed. The band gap was found more or less independent of doping concentration. The activation energy (Ea) also decreases on increasing the doping amount.  相似文献   

6.
We present a pioneer study depicting a significant improvement in the photoluminescence (PL) intensity and display of an expeditious electro-optic response of ferroelectric liquid crystal (FLC) when doped with graphene quantum dots (GQDs). Significant threefold enhancement in PL intensity of GQDs/FLC composite material can be ascribed to the additive combination of emissions from GQDs and FLCs. Furthermore, promptness in electro-optical response by a factor of 34% can be attributed to the lowering of rotational viscosity of the FLC material due to the incorporation of GQDs. These results would certainly be helpful in realisation of highly luminescent and faster generation of LC systems.  相似文献   

7.
Polymer dispersed liquid crystals (PDLCs) using nematic liquid crystal and photo-curable polymer (NOA 65) were prepared by polymerisation-induced phase separation technique, in equal ratio (1:1) of polymer and liquid crystal (LC). We demonstrate that doping of small amount (0.125%, wt./wt.) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye in PDLC generously controlled the molecular orientation, dynamics of LC in droplet and size of droplets. The effects of multiwall CNTs and dye on PDLCs were studied in terms of transition temperature, droplet morphology, transmittance characteristic, contrast ratio and response time. The results exhibited that the values of the threshold electric fields were reduced from 8 V/µm (pure PDLC) to 1.18 and 1.72 V/µm, doped with multiwall CNTs and dye, respectively. The CNTs-doped PDLC shows faster switching response as compared with pure PDLC and dye-doped PDLC. However, dye-doped PDLC shows much higher contrast among all PDLC samples. Further, the results also illustrate that the birefringence value of LC in PDLCs was changed with doping of CNTs and dye.  相似文献   

8.
ABSTRACT

In this study, we doped homogenous aligned nematic liquid crystal (NLC) systems with strontium titanate (SrTiO3) nanoparticles (NPs), and investigated the impact of doping concentration on the NLC’s electro-optical (EO) properties. SrTiO3 NP-doped NLC cells maintained a high optical transmittance of 77.51% to 78.41% compared to pure NLC cells (78.09%). At a 0.1 wt.% SrTiO3 NP doping concentration, twisted-nematic (TN)-LC cells exhibited enhanced EO performance, with a reduced threshold voltage from 1.70V to 1.61V and a shorter response time from 17.03 ms to 10.66 ms without optical defects and degradations. We also observed an improvement in thermal endurance for doping concentrations of 0.05 and 0.1 wt.%.  相似文献   

9.
In the present study, ferromagnetic nickel nanoparticles (NiNPs) of size (~20 nm, 40 nm) into ferroelectric liquid crystal (FLC) mixture has been dispersed and investigated. Effect of size of NiNPs on the electro-optic, dielectric and optical properties of FLC mixture have been studied and discussed. A minor improvement in spontaneous polarisation, rotational viscosity and faster response time in NiNPs-FLC samples than pure FLC is noticed. Goldstone mode of relaxation frequency ~100 Hz is detected in all samples and follow a Debye type relaxation behaviour. In addition, it is observed that size of NiNPs does not have any remarkable effect on relaxation frequency and dielectric strength. A single absorption peak at 363, 362 Hz is also noticed in pure FLC and NiNPs-FLC samples.  相似文献   

10.
《Liquid crystals》2012,39(12):1868-1876
ABSTRACT

Addition of nanomaterial into pure nematic liquid crystals (NLCs) leads to improvement in the various physical properties of the liquid crystal (LC) host. Doping of nanomaterials affects the local molecular arrangement of the LC molecules. Here, we present the results of our investigation on the effect of functionalised silver nanoparticles (f-AgNPs) on the physical properties of the rod-shaped NLC, 4-trans-pentyl-cyclohexyl cyanobenzene (5PCH). The dielectric constant, threshold voltage, elastic constants, birefringence and conductivity measurements were performed on pure 5PCH and its f-AgNPs doped nanocomposites as a function of temperature in planar cell. The magnitude of dielectric anisotropy, elastic constants and birefringence in nanocomposites were enhanced with increasing concentration of f-AgNPs indicating enhancement of order parameter in the nematic medium. Threshold voltage decreases with increasing concentration of f-AgNPs. Both parallel and perpendicular components of conductivity decrease with increasing concentration of f-AgNPs due to the absorption of ion by the doped f-AgNPs. This observed decrease in conductivity in nanocomposites is further confirmed by calculating the ion transportation number and time of flight. The ion transport number i.e ionic contribution present in the LC cell was found to be 0.966 in pure 5PCH, whereas 0.830 in 0.5 wt% of f-AgNPs nanocomposite of 5PCH.  相似文献   

11.
We investigated the dielectric losses and the ionic currents in the nematic liquid crystal (NLC) doped with semiconductor quantum dots (QDs) of CdSe/ZnS core – shell type and covered with trioctylphosphine oxide (TOPO) molecules. The dielectric loss tangent of the NLC composites increased with increasing the QDs concentration from 0.1 to 0.3 wt%. The density of mobile ions in the composites increased linearly and the average values of ions mobility in the composites decreased with increasing the QDs concentration. The fast ions with the mobility of about 10–10 m2/V·s and the slow ions with the mobility of about 10–11 m2/V·s were detected in the NLC composites. The growth of the content of slow ions took place with increasing the QDs concentrations. Increasing the dielectric loss tangent was observed with increasing the duration of sonication time of the NLC composites to prepare homogeneous suspensions. The fragmentation of the CdS/ZnS shell as a result of the sonication may lead to the appearance of the slow ions in the NLC composites.  相似文献   

12.
Octadecylamine capped cadmium selenide quantum dots (CdSe QDs) were dispersed in the ferroelectric liquid crystal (FLC) FELIX 16/100. The QD dispersed FLC system was investigated on the planar anchored cell. Addition of specific concentration of the QDs in the pure FLC induces a new relaxation mode along with the Goldstone relaxation mode. QDs assisted quantum fluctuations are probably responsible for the existence of this new relaxation mode in the QDs dispersed FLC system. The ionic contaminations associated with the FLC materials were trapped on the surface of QDs due to the ion-trapping character of QDs. The trapping of ionic contaminations was confirmed by the a.c. conductivity measurement. The physical properties of the pure and dispersed FLC were carried out as a function of doping concentration of QDs, temperature and frequency.  相似文献   

13.
《Liquid crystals》1998,24(2):263-270
Polymerization and phase behaviour of a branched liquid crystalline bismethacrylate in a ferroelectric liquid crystal (FLC) were characterized. Addition of the monomer increases the temperature range of the smectic A phase, and, at relatively low concentrations of monomer, the temperature range increases to more than 10 times that observed in the neat FLC. Other phases such as the smectic C* phase are no longer exhibited as the monomer interferes with the inherent tilt of the FLC molecules. After polymerization, the polymer network phase separates and the phase transition temperatures return to values close to those of the FLC. The monomer also shows a high degree of orientational order before polymerization, which is retained to a large extent after polymerization. The order in the polymer network results in considerable birefringence at temperatures well above the clearing point of the pure FLC. This behaviour is induced by the order of the polymer network and interactions of the FLC molecules with the network which prevent a fraction of the FLC molecules from exhibiting typical phase behaviour. In the formation of the branched liquid crystalline bismethacrylates/FLC composites, a steady increase is observed in the polymerization rate as the polymerization temperature increases and the order of the FLC phase decreases, a behaviour significantly different from that observed in other monomer/FLC mixtures for which the polymerization rate increases as the order of the FLC phase increases. Additionally, at appropriate polymerization temperatures around the clearing point, polymerization driven endothermic phase transitions may be observed.  相似文献   

14.
Four kinds of poly(4-methacryloyloxychalcone) (PCEMA) photo-alignment materials were synthesized. The effect of the cinnamoyl group on liquid crystal (LC) aligning capabilities and electro-optical characteristics of photo-aligned twisted nematic (TN) liquid crystal displays (LCDs) was investigated by photo-dimerization. Uniform NLC alignment by linearly polarized UV exposure at normal incidence on the PCEMA surfaces having a high density of cinnamoyl groups was observed. Also, excellent voltage-transmittance (V-T) curves for the photo-aligned TN-LCDs on the PCEMA surfaces was achieved. We find that the V-T and response time characteristics can be improved by increasing the density of cinnamoyl groups.  相似文献   

15.
ABSTRACT

The structures of the liquid crystal (LC) molecules have a key role in impacting the electro-optical performance of a polymer dispersed liquid crystal (PDLC) film. In this paper, the relationship between the LC molecular structures and the electro-optical properties of PDLC films is investigated based on an unexplored cyano-terminated tolane compounds (CTTCs) doped E8 LCs/UV polymers system. Due to the high polarity of CTTCs, LCs doped with the cyano-terminated tolane (CTT) molecules exhibit high birefringence and large positive dielectric anisotropy. On the whole, PDLC films doped with the CTT molecules exhibit a lower driving voltage than that doped with the pure E8. More excitingly, PDLC films based on CTT molecules with larger length-to-width ratio and longer conjugated system show higher contrast ratio (CR) and faster response time. Eventually, the mechanism of the effects of CTT-based molecular structures and the relationship between the electro-optical performance of PDLC films and CTT molecules are illustrated. This work paves a new way for optimising the electro-optical properties of PDLC films.  相似文献   

16.
Liquid crystal (LC) mixtures of a reactive diacrylate and a commercial ferroelectric liquid crystal (FLC) mixture were produced. The mixtures were brought into cells provided with orientation layers in which various orientations such as uniaxial and twisted orientations, could be induced. When the desired orientation had been obtained, the polymerization of the reactive molecules was induced creating a three-dimensional anisotropic network containing the FLC molecules which were not chemically attached to the network (ferroelectric gels). The presence of the anisotropic network was found to have a large effect on various properties of the FLC molecules. For example, complex orientations (for example, 180° twisted) obtained by polymerization (formation of the gel) in the nematic phase remained unchanged when the gel was cooled to the FLC phase. Likewise uniaxial orientation, which cannot be realised in thick cells containing the pure FLC, could be realised when ferroelectric gels were used. For this reason the ferroelectric gels will be referred to as an anisotropic network-stabilized FLC. Optical properties such as effective birefringence and tilt angle were also influenced by the network. When use was made of a network with a lower birefringence than the FLC, a reduced effective birefringence in gels was observed. This is important for technologies involving thicker cells. The switching covered a range of voltages in the case of the gels, instead of showing a well-defined threshold voltage as in the bulk. The possibility of using this effect to obtain grey scales in cells during passive addressing has also been demonstrated.  相似文献   

17.
We discuss instabilities exhibited by free surface nematic liquid crystal (NLC) films of nanoscale thickness deposited on solid substrates, with a focus on surface instabilities that lead to dewetting. Such instabilities have been discussed extensively; however, there is still no consensus regarding the interpretation of experimental results, appropriate modeling approaches, or instability mechanisms. Instabilities of thin NLC free surface films are related to a wider class of problems involving dewetting of non-Newtonian fluids. For nanoscale films, the substrate–film interaction, often modeled by a suitable disjoining pressure, becomes relevant. For NLCs, one can extend the formulation to include the elastic energy of the NLC film, leading to an ‘effective’ disjoining pressure, playing an important role in instability development. Focusing on thin film modeling within the framework of the long-wave asymptotic model, we discuss various instability mechanisms and outline problems where new research is needed.  相似文献   

18.
The interface energy for a nematic liquid crystal (NLC) is considered as the sum of potential energy between LC molecules and molecules of the substrate surface, and a formula for anchoring energy is derived by elementary principles. The anchoring energy for a NLC should have two terms, the first term is the same as the Rapini–Papoular expression, the second is related to the normal of interface and resultes from the biaxial property of a NLC induced by interface. Hence there are two anchoring coefficients, W 1 and W 2. We demonstrate that W 1 is equal to the tilt angle strength Aθ , and W 2 corresponds to the difference between Aθ and the azimuthal strength A? . Thus Aθ A? is due to the biaxial property of the NLC near the interface. Applying this formula to the twisted NLC cell, we discuss the threshold and saturation field, as well as the maximal tilt angel θ m with respect to Aθ /A? . Previously proposed formulae are discussed from our point view.  相似文献   

19.
The impact of single-molecule magnet (SMM), Mn12-acetate, on the dielectric properties of ferroelectric liquid crystal (FLC) has been investigated by dielectric spectroscopy and electro-optical techniques in a dual electrode sample cell (DESC). The temperature-dependent dielectric studies on Mn12-acetate/FLC composite have revealed the enhancement in the ferroelectric (smectic C*) to paraelectric (smectic A*) phase transition temperature by 3.5°C. The relaxation process corresponding to Goldstone mode in the ferroelectric phase of the composite is found to be slower compared to pure FLC sample. The electrical response for an input triangular wave shows the existence of one extra polarisation peak in Mn12-acetate/FLC composite which is ascribed to the induced dipole moment in Mn12-acetate molecule. The electro-optical texture of Mn12-acetate/FLC composite revealed that the incorporation of SMM in FLC significantly improve the memory effect.  相似文献   

20.
A continuum model is employed to study systematically the optical response of hybrid-aligned nematic (HAN) liquid crystal cells under the application of an external electric field. The influence of the flexoelectric effect is discussed for a large range of anchoring strengths at the homeotropic alignment layer. It is shown that the optical response of HAN cells is governed by a complicated interplay between the flexoelectric coefficient and homeotropic anchoring strength. In particular, the calculations reveal that, for weak homeotropic anchoring, the flexoelectric effect leads to a non-linear voltage shift of the optical transmittance as a function of flexoelectric coefficient, and gives rise to an asymmetry in the transmittance–voltage curve. Finally, a comparison of the continuum-model simulations with recent experimental observations indicates that both the flexoelectric coefficient and the anchoring strength of the nematic liquid crystal MBBA on a homeotropic polyimide alignment layer are significantly lower than previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号