首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The present work concerns with the investigation of the effect of dispersion of Silica (SiO2) nanoparticles (NPs) in host ferroelectric liquid crystal (FLC) KCFLC10S on the dielectric and electro-optical properties and ultraviolet-visible (UV-VIS) absorption spectra of the pristine and dispersed systems. We have found that the dispersion of SiO2 NPs in the host FLC strongly influences the various properties of dispersed systems. No evidence of aggregates and clumps in the dispersed system has been observed. Due to SiO2 NPs dispersion, a rapid decrease in dielectric permittivity ε’, increase in conductivity σ with frequency, increase in spontaneous polarisation Ps and decrease in switching time with bias voltage have been observed. Based on the absorption spectra, we have also made an attempt to link the electro-optical and dielectric response with the mechanism of FLC–NPs interactions.  相似文献   

2.
In order to fabricate efficient and superior performance liquid crystal (LC) devices, the physical parameters of the LC mesogens can be duly altered by incorporating non-mesogenic materials like quantum dots (QDs), graphene and polymers. In the present work, the effect of adding core/shell QDs in two ferroelectric liquid crystals (FLCs), along with the change in their physical properties, has been investigated. A small concentration of QDs is dispersed into the two FLCs and temperature variations of vital parameters like spontaneous polarisation (Ps), rotational viscosity, response time, relative permittivity and relaxation strength have been measured for both the FLC materials. The contrast ratio, UV–near visible absorbance as well as photoluminescence (PL) of both the mesogens have also been determined and compared. A faster electro-optical response and the induced phenomenon of PL with a temperature-dependent low-frequency relaxation mode have been observed in Felix 17/100 after the addition of QDs. The present study also provides valuable information about the interaction between QDs and the two FLC systems depending upon polarisation–field (P–E) coupling. The same dopant can interact with FLCs in dissimilar fashion if the intrinsic properties of both the FLCs are different thereby producing different modifications in their respective physical parameters.  相似文献   

3.
We present a pioneer study depicting a significant improvement in the photoluminescence (PL) intensity and display of an expeditious electro-optic response of ferroelectric liquid crystal (FLC) when doped with graphene quantum dots (GQDs). Significant threefold enhancement in PL intensity of GQDs/FLC composite material can be ascribed to the additive combination of emissions from GQDs and FLCs. Furthermore, promptness in electro-optical response by a factor of 34% can be attributed to the lowering of rotational viscosity of the FLC material due to the incorporation of GQDs. These results would certainly be helpful in realisation of highly luminescent and faster generation of LC systems.  相似文献   

4.
Rotational viscosity and spontaneous polarization are the most important properties of a ferroelectric liquid crystal with regard to its switching time in surface stabilized or a.c. field stabilized displays. Whereas there is an abundant literature about spontaneous polarization, only a few attempts have been made to determine the rotational viscosity. We set up a model for the electric response of a ferroelectric liquid crystal cell on application of an electric field. For the application of a triangular wave voltage we derive a relation between the rotational viscosity, the spontaneous polarization, the tilt angle, the maximum induced polarization current and the electric field strength. Experiments are carried out on several ferroelectric liquid crystals and the derived relation was used to determine the rotational viscosity. The relation between the rotational viscosity and the polarization on the one hand and the optical switching time on the other hand is discussed in some detail.  相似文献   

5.
The spontaneous polarization and electro-optic response of ferroelectric liquid crystals (FLCs) were investigated in a cell fabricated with a polyimide alignment layer coated by the Langmuir-Blodgett method. The surface properties of the cured polyimide layers were monitored by contact angle measurement, and by FTIR spectroscopy and AFM for the orientation and surface roughness, respectively. The apparent spontaneous polarization of an FLC determined in a practical sandwich-cell depended on various conditions such as cell thickness, cooling rate from the smectic A to chiral smectic C phase, and deposition pressure. Electro-optic response and decay times of FLCs were also measured. Furthermore, the ions in the FLC mixture reduced the magnitude of the effective electric field, but had no effect at high frequency.  相似文献   

6.
The effects on the physical and electro-optical properties of ferroelectric liquid crystals (FLCs) after the doping of a dilute suspension of ferroelectric nanoparticles (BaTiO3) have been studied. Due to the permanent electric dipole moments of the ferroelectric nanoparticles, the spontaneous polarisation of FLCs with low doping concentration was about twice that of pure FLCs, in addition to a significant improvement in the dielectric properties, the response time and the V-shaped switching in the chiral smectic C (SmC?) phase. The results obtained point the way to an alternative for improving the applicability of FLCs without resorting to chemical synthesis.  相似文献   

7.
The photorefractive effect in composites of a ferroelectric liquid crystal (FLC) and several photoconductive polymers was investigated. The photorefractivity of mixtures of photoconductive polymers and an FLC (polymer/FLC), as well as that of photoconductive‐polymer‐stabilized ferroelectric liquid crystals (PPS‐FLCs) was examined. The polymer/FLC samples exhibited two‐beam coupling gain coefficients of about 6~12 cm?1 in a 5 µm gap cell. The photopolymerization of a methacrylate monomer in the FLC medium established a polymer‐stabilized state in which the alignment of FLC molecules was mechanically stabilized. The noise in a two‐beam coupling signal was reduced significantly in the PPS‐FLC samples.  相似文献   

8.
Rod-shaped 5 wt.% copper-doped ZnO (ZnO:Cu2+) ferromagnetic nanoparticles (NPs), prepared by hydrothermal method, were dispersed in ferroelectric liquid crystal (FLC) named Felix 17/100. The effect of ferromagnetic NPs on the physical properties of FLC material (Felix 17/100) has been investigated by dielectric, electro-optical and polarising optical microscopic methods. A noteworthy time-dependent memory has been observed in the NPs-dispersed FLC composite attributed to the coupling of magnetic field associated to NPs with the director orientation of FLC. Improvement in spontaneous polarisation and dielectric susceptibility of FLC material has been ensued with the addition of ferromagnetic NPs. Faster electro-optic response, at lower applied voltage, has also been observed in NPs-dispersed FLC composite. These changes are accredited to the magneto-electric dipolar coupling existing due to the interactions between magnetic-dipole and electric-dipole moments of magnetic NPs and FLC material, respectively. The formation of periodic domains capable to show memory effect has been observed in composite. The observed time-dependent memory was confirmed by dielectric and electro-optical methods. FLC material enriched with the properties of ferromagnetic NPs can be utilised in advanced multifunctional optical devices, time-dependent memory-based security devices and computational purposes.  相似文献   

9.
Electro-optic properties of polymer stabilized ferroelectric liquid crystal (PSFLC) systems are examined as a function of varying concentrations of either a linear or crosslinked thiol-ene polymer. The thiol-ene method of polymer stabilization is a drastic change from previous studies designed to avert the problem of polymer phase separation. FLC rise time and tilt angle measurements were used to determine the effects of the polymer network on the optical properties of the system. The addition of monomer impurities to both systems demonstrated a reduction in tilt angle, which translated into decreased switching speeds in both systems prior to polymerization. The crosslinked thiol-ene system showed increased switching times due to the creation of polymer in the interlayer spacing of the FLC, but exhibited minimal increase in the rotational viscosity of the system. In addition, the crosslinked polymer systems resulted in an increase in the liquid crystalline order, which produced an increase in the contrast ratio of the system. The linear polymer system showed drastically different results as compared with the crosslinked system. The rise time and tilt angle measurements decreased upon polymerization of the linear thiol-ene and the rotational viscosity and contrast ratio values also decreased. We suggest that the linear thiol-ene polymer phase separation from the interlayer spacing leads to a microscopic misalignment of the FLC molecules, causing a decrease in the optical properties of the LC.  相似文献   

10.
This paper reviews our recent work on the photorefractive effect of ferroelectric liquid crystals (FLCs). The photorefractive effect is defined as the optical modulation of the refractive index of a medium as a result of a variety of processes. The interference of two laser beams in a photorefractive material establishes a refractive index grating. This phenomenon enables the creation of different types of photonic applications. FLCs exhibit fast electric field response, and the orientation of the molecular axis of FLCs changes its direction according to the change in direction of the spontaneous polarization (Ps). When two laser beams interfere in a photoconductive FLC, an orientational grating is formed. The mechanism of the formation of the grating is based on the response of the Ps to the photoinduced internal electric field. The time of formation of the refractive index grating is significantly shorter in FLC materials.  相似文献   

11.
Electro-optic properties of polymer stabilized ferroelectric liquid crystal (PSFLC) systems are examined as a function of varying concentrations of either a linear or crosslinked thiol-ene polymer. The thiol-ene method of polymer stabilization is a drastic change from previous studies designed to avert the problem of polymer phase separation. FLC rise time and tilt angle measurements were used to determine the effects of the polymer network on the optical properties of the system. The addition of monomer impurities to both systems demonstrated a reduction in tilt angle, which translated into decreased switching speeds in both systems prior to polymerization. The crosslinked thiol-ene system showed increased switching times due to the creation of polymer in the interlayer spacing of the FLC, but exhibited minimal increase in the rotational viscosity of the system. In addition, the crosslinked polymer systems resulted in an increase in the liquid crystalline order, which produced an increase in the contrast ratio of the system. The linear polymer system showed drastically different results as compared with the crosslinked system. The rise time and tilt angle measurements decreased upon polymerization of the linear thiol-ene and the rotational viscosity and contrast ratio values also decreased. We suggest that the linear thiol-ene polymer phase separation from the interlayer spacing leads to a microscopic misalignment of the FLC molecules, causing a decrease in the optical properties of the LC.  相似文献   

12.
A new series of ferroelectric liquid crystals (FLCs) has been designed for active matrix displays based upon the chiral smectic C phase. The FLCs have been derived from optically active fluorinated alkanols and a laterally fluoro substituted biphenylyl-1,3-dioxan core. Their physical properties such as spontaneous polarization, current response time, and tilt angle have been determined. The FLC derived from 2-fluoro-octanol showed a very short current response time of 10μs at T Sm*-N* - T= 10°C, while another FLC with the same core derived from 5-fluoro-octanol gave a value of 150μs.  相似文献   

13.
《Liquid crystals》2000,27(1):35-42
The polymer network-ferroelectric liquid crystal (FLC) microcomposites are prepared by UV crosslinking of a chiral prepolymer diluted in a FLC. A fast cross-linking process involving 20 mW cm-2 UV intensity produces material with ferroelectric properties which have strongly deteriorated compared with the pure FLC. By a slow process using a UV intensity of 2 mW cm-2 the ferroelectric properties are less affected. It is supposed that the very dense polymer network, which arises during the fast process, is responsible for hindering the switching process and decreasing the spontaneous polarization. The photopolymerization kinetics are determined by measuring the switching current during the UV irradiation. The characteristic time of cross-linking is mainly reflected in the evolution of the spontaneous polarization and rotational viscosity with time.  相似文献   

14.
The impact of single-molecule magnet (SMM), Mn12-acetate, on the dielectric properties of ferroelectric liquid crystal (FLC) has been investigated by dielectric spectroscopy and electro-optical techniques in a dual electrode sample cell (DESC). The temperature-dependent dielectric studies on Mn12-acetate/FLC composite have revealed the enhancement in the ferroelectric (smectic C*) to paraelectric (smectic A*) phase transition temperature by 3.5°C. The relaxation process corresponding to Goldstone mode in the ferroelectric phase of the composite is found to be slower compared to pure FLC sample. The electrical response for an input triangular wave shows the existence of one extra polarisation peak in Mn12-acetate/FLC composite which is ascribed to the induced dipole moment in Mn12-acetate molecule. The electro-optical texture of Mn12-acetate/FLC composite revealed that the incorporation of SMM in FLC significantly improve the memory effect.  相似文献   

15.
A relationship between the electro-optic switching time and dielectric parameters of a S*c ferroelectric liquid crystal (FLC) is obtained. This relationship is derived in terms of spontaneous polarization Ps, relaxation time τG and dielectric strength ΔεG of the Goldstone mode. It shows clearly that the switching phenomenon in FLCs is governed by the dielectric behaviour of the Goldstone mode. Based on the Landau model, the switching time has also been related to the material parameters of the FLC.  相似文献   

16.
Nanocomposites comprise functionalised multi-walled carbon nanotubes (0.00 wt%, 0.05 wt% and 0.07 wt%) and ferroelectric liquid crystals (FLCs) have been studied in the 5-μm- and 12-μm-thickness cells. Effect of anchoring energy and dopant concentration on the mesomorphic, electro-optic and dielectric behaviour of FLC has been explored. Fast switching time and increase in permittivity of non-doped FLCs and resulting nanocomposites as a function of increased cell thickness (from 5 to 12 μm) can be attributed to the change in the anchoring energy and direct current (DC) conductivity of the non-doped and doped systems. π–π stacking between carbon nanotubes and FLC layers give rise to the spontaneous polarisation of nanocomposites. Effect of cell thickness and anchoring energy on bistability are also discussed.  相似文献   

17.
In the present study, ferromagnetic nickel nanoparticles (NiNPs) of size (~20 nm, 40 nm) into ferroelectric liquid crystal (FLC) mixture has been dispersed and investigated. Effect of size of NiNPs on the electro-optic, dielectric and optical properties of FLC mixture have been studied and discussed. A minor improvement in spontaneous polarisation, rotational viscosity and faster response time in NiNPs-FLC samples than pure FLC is noticed. Goldstone mode of relaxation frequency ~100 Hz is detected in all samples and follow a Debye type relaxation behaviour. In addition, it is observed that size of NiNPs does not have any remarkable effect on relaxation frequency and dielectric strength. A single absorption peak at 363, 362 Hz is also noticed in pure FLC and NiNPs-FLC samples.  相似文献   

18.
The polymer network-ferroelectric liquid crystal (FLC) microcomposites are prepared by UV crosslinking of a chiral prepolymer diluted in a FLC. A fast cross-linking process involving 20 mW cm-2 UV intensity produces material with ferroelectric properties which have strongly deteriorated compared with the pure FLC. By a slow process using a UV intensity of 2 mW cm-2 the ferroelectric properties are less affected. It is supposed that the very dense polymer network, which arises during the fast process, is responsible for hindering the switching process and decreasing the spontaneous polarization. The photopolymerization kinetics are determined by measuring the switching current during the UV irradiation. The characteristic time of cross-linking is mainly reflected in the evolution of the spontaneous polarization and rotational viscosity with time.  相似文献   

19.
A series of new optically active δ-lactones were synthesized as chiral dopants for ferroelectric liquid crystals (FLCs). The response time of an FLC mixture containing 4 mol% (S)-2,2-dimethyl-5-[2-fluoro-4-(5-n-octylpyrimidin-2-yl)-phenoxy[methyl-δ-valerolactone was 25 μs at 25°C. (0-90 per cent change in light transmission, 10 V μm-1). The synthesis and properties of these materials as practical chiral dopants are reported.  相似文献   

20.
ABSTRACT

Electrocaloric effect (ECE) in two ferroelectric liquid crystalline (FLC) materials has been evaluated by mean of two indirect characterization methods: the photopyroelectric (PPE) technique and the polarization current reversal one. The obtained results show a good correspondence of the adiabatic temperature change associated with the ECE evaluated from both methods. This validates the possibility to use the PPE technique to investigate the ECE in FLCs. This study also demonstrates that FLCs can be used as electrocaloric material. More particularly, it shows that as for their solid homologous, liquid crystals displays more pronounced ECE in the vicinity of a first order transition than that measured near to second-order one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号