首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phonon vibrational frequencies, electronic and elastic properties of SrFCl, one of the members of the alkaline-earth fluorohalide family crystallizing with the PbFCl-type structure, have been investigated, for the first time, at the ab initio level, by using the periodic CRYSTAL program. Both Hartree-Fock (HF) and density functional theory (DFT) Hamiltonians have been used, with the latter in its local density, gradient-corrected (PW91), and hybrid (B3LYP) versions. The structural and elastic properties are in good agreement with experiment, with the exception of those calculated within the local density approximation, which were found to be systematically under-estimated (distances) or over-estimated (elastic properties). As regards the phonon frequencies, B3LYP and PW91 provide excellent results, the mean absolute difference with respect to the experimental Raman data being 4.1% and 3.6%, respectively.  相似文献   

2.
An ab initio pseudopotential plane wave method using linear response approach has been employed to study the lattice dynamics of two cubic antiperovskites AsNBa3 and SbNBa3. The bulk properties, elastic constants, phonon dispersion curves, phonon density of states and temperature dependent thermodynamic quantities of both antiperovskites are obtained. The calculated lattice constants, elastic and bulk properties are compared with the available theoretical data. This is the first systematic and quantitative prediction of phonon and thermodynamical properties of these antiperovskite compounds.  相似文献   

3.
The optical constants of EuO and EuS single crystals have been determined at 300 K by means of a Kramers-Kronig analysis of the reflectivity for photon energies up to 12 eV. For EuS the optical constants have also been determined above and below the Curie temperature in the energy region from 1.5 to 5.7 eV. A first tentative assignment of optical structure to interband transitions has been attempted on the basis of recent orthogonal plane wave (OPW) and earlier augmented plane wave (APW) band structure calculations. For photon energies from 1.2 to 3.8 eV a low magnetic field-modulated magnetoreflectance has been measured using circularly polarized light. By use of the Kramers-Kronig relation for the differential reflectance spectra in conjunction with our data of the optical constants, a detailed analysis of the magnetoreflectance spectra of EuS was carried out for the first time.  相似文献   

4.
The thermopower of the divalent normal metals has been calculated in a single OPW approximation, using pseudopotential form factors and a realistic phonon spectra. The calculation emphases the contribution of the phonon drag term. The results are compared with experiments and a simple interpretation is suggested for the evolution of the thermopower anisotropy in the series Be, Mg, Zn and Cd.  相似文献   

5.
To simulate the perfect single-walled boron nitride nanotubes and nanoarches with armchair- and zigzag-type chiralities and uniform diameter of ∼5 nm, we have constructed their one-dimensional (1D) periodic models. In this study, we have compared the calculated properties of nanotubes with those for both hexagonal and cubic phases of bulk: bond lengths, binding energies per B-N bond, effective atomic charges as well as parameters of total and projected one-electron densities of states. For both phases of BN bulk, we have additionally verified their lattice constants. In the density functional theory (DFT), calculations performed using formalism of the localized Gaussian-type atomic functions as implemented in the CRYSTAL-06 code we have applied Hamiltonians containing either PWGGA or hybrid (DFT+HF) B3PW exchange-correlation functionals. After calculation of Hessian matrix for the optimized structures of BN bulk (both phases) and nanotubes (both chiralities) using the CRYSTAL code we have estimated their normal phonon modes within the harmonic approximation. Applying both atomistic and continuum models we have calculated the elastic energies and moduli for SW BN nanoarches. Our calculations clearly show a reproducibility of the atomic structure, effective charges and total energy, as well as phonon and elastic properties when using either PWGGA or hybrid B3PW Hamiltonians. On other hand, there is a high sensitivity of the discrete energy spectra parameters (including band gap) to the choice of the first principles approach (the hybrid method reproduce them noticeably better).  相似文献   

6.
A first-principles study of the anisotropic thermal expansion of hcp metals Be and Y is reported. According to quasiharmonic approximation, the phonon spectra were computed at a set of lattice parameters using the pseudopotential plane wave method with the local density approximation in the framework of the density functional perturbation theory. The free energies were obtained according to the calculated phonon spectra and thermal properties such as specific heat at constant volume (pressure) were calculated. The electronic contribution to specific heat was found important to metal Y not only at very low temperature but also over room temperature. The calculated results are in good agreement with available experimental data in a wide range of temperature.  相似文献   

7.
X.F. Li 《哲学杂志》2013,93(13):1500-1519
Elastohydrodynamic problems of decagonal quasicrystals are analysed where the phonon field obeys wave equation and the phason field obeys diffusive wave equation. Basic equations are solved in the quasiperiodic plane and periodic plane, respectively. Final governing equations of dynamic behaviours of decagonal quasicrystals are obtained. A general solution is derived in terms of introduced three auxiliary functions, where two individually satisfy a fourth-order partial differential equation and one satisfies a second-order hyperbolic diffusion equation. Using the derived governing equations, elastic waves propagating in the quasiperiodic plane and a plane containing the period axis are analysed. Secular equations are obtained. It is found that differing from conventional crystals, at least four branches of elastic waves exist when the phonon–phason coupling is present. Moreover, acoustic waves have attenuation during wave propagation. Phason fluctuations exhibit exponential decaying behaviour due to kinematic viscosity and damping. The phase speeds are isotropic in the quasiperiodic plane and anisotropic in a plane with the periodic axis. The section of the slowness surfaces is plotted.  相似文献   

8.
The effect of phonon focusing on the phonon transport in single-crystal nanofilms and nanowires is studied in the boundary scattering regime. The dependences of the thermal conductivity and the free path of phonons on the geometric parameters of nanostructures with various elastic energy anisotropies are analyzed for diffuse phonon scattering by boundaries. It is shown that the anisotropies of thermal conductivity for nanostructures made of cubic crystals with positive (LiF, GaAs, Ge, Si, diamond, YAG) and negative (CaF2, NaCl, YIG) anisotropies of the second-order elastic moduli are qualitatively different for both nanofilms and nanowires. The single-crystal film plane orientations and the heat flow directions that ensure the maximum or minimum thermal conductivity in a film plane are determined for the crystals of both types. The thermal conductivity of nanowires with a square cross section mainly depends on a heat flow direction, and the thermal conductivity of sufficiently wide nanofilms is substantially determined by a film plane orientation.  相似文献   

9.
E. Deligoz  H. Ozisik 《哲学杂志》2015,95(21):2294-2305
The first-principles calculations are employed to provide a fundamental understanding of the structural features and relative thermodynamical, mechanical and phonon stability of TiAsTe compound. The calculated lattice parameters are in good agreement with available experimental results. We have computed elastic constants, its derived moduli and ratios that characterize mechanical properties for the first time. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition. The minimum thermal conductivities of TiAsTe are calculated using both Clarke’s model and Cahill’s model. Furthermore, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Young’s modulus and shear modulus. Our results suggest strong elastic anisotropy for this compound. Additionally, the phonon spectra and phonon density of states are also obtained and discussed. The full phonon dispersion calculations confirm the dynamic stability of TiAsTe.  相似文献   

10.
The temperature dependences (5–300 K) of the Raman spectra of E 2g phonons and optical constants in zinc single crystals are measured in the excitation energy range 1.4–2.54 eV. It is found that phonon damping decreases upon an increase in the wavelength of exciting radiation. The obtained results are compared with the dependence of the phonon width on the excitation energy (the probed wave vector of the excitations under investigation), which are presented for the first time for the transition metal osmium, as well as with the calculated electron-phonon renormalization of damping, taking into account the actual distribution of wave vectors.  相似文献   

11.
The optical properties of hexagonal InN have been studied using the all-electron approach based on density functional theory (DFT). The full-potential augmented plane wave method is employed with two different exchange-correlation potentials, the Perdew–Wang (PW) and the Engel–Vosko (EV) approximations. In addition, both non-relativistic and relativistic approximations are considered. We found that the PW and relativistic approximations give a metallic ground state; whereas using the EV and non-relativistic approximations a semiconductor phase is obtained, opening the gap up to 0.83 eV. Besides, the calculated interband transitions of the complex dielectric function up to 13 eV show favourable agreement with the recent spectroscopic ellipsometry results.  相似文献   

12.
The electronic properties of Sr doped CaMnO3 are studied using the first principle density functional theory calculation based on a plane wave basis and pseudopotentials. The thermoelectric properties are analyzed on the basis of electronic properties. The band structure results show that the doped system undergoes a semiconductor-to-conductor transition and the bands near Fermi level experience a significant distortion; the density of states results show that the density of states near Fermi level is increased. The combination of Mnd and Op orbitals exhibits enhanced covalence nature. It is estimated that the thermopower and carrier conduction capability should be enhanced, and the phonon conduction should be depressed, indicating the improved thermoelectric properties for Sr doped CaMnO3 system.  相似文献   

13.
P Tripathi  N C Mohapatra 《Pramana》1991,37(6):513-524
The Bloch enhancement factor α(k f ) of the electric field gradient has been evaluated for the half-filledd-core Fe host metal and completely filledd-core Cu host metal in single orthogonalized plane wave (OPW) approximation. For this purpose the radially-dependent antishielding factors,γ(r) have been calculated in non-orthogonal Hartree-Fock perturbation theory (NHFPT). The results show that the contributions of antishielding to α(k f ) from the plane wave-plane wave part and the core part of the OPW state are individually large but opposite in sign and thereby lead to partial cancellation. The net effect of antishielding on α(k f ) is found to be − 5.6% in Fe and 14% in Cu.  相似文献   

14.
We present the results of ab initio calculations of lattice dynamics and the second order elastic stiffness constants of nickel-based magnetic shape memory alloy Ni2MnIn in stoichiometric composition. The plane wave basis sets and pseudopotential method within spin-polarized generalized gradient approximation (σ-GGA) scheme of the density functional theory (DFT) is applied. Elastic constants are calculated by tetragonal and monoclinic isochoric strains on cubic L21 structure. The calculated elastic constants agree very well with the recent ultrasonic experimental data. Phonon dispersion spectra are investigated within linear response technique of the density functional perturbation theory (DFPT). A vibrational anomaly is observed in phonon spectra at the transverse acoustic mode (TA2) in [ζ ζ0] direction at wavevector ζ = 0.3 as an indication of the structural instability of the system to shear deformation. This anomaly is also verified by the low shear modulus and large elastic anisotropy ratio. Phonon dispersion curves are in excellent agreement with the results of recent neutron diffraction experiments.  相似文献   

15.
J Philip  M S Kala 《Pramana》1997,49(5):555-561
This paper reports the results of the study of anisotropy in elastic wave propagation in single crystal superconducting BSCCO. The inverse and group velocities of elastic waves propagating in different directions have been computed and the corresponding slowness and ray velocity surfaces plotted, taking elastic constant data from literature. In addition, the phenomenon of phonon focussing has been investigated in this material by computing the phonon enhancement factor along different directions in spherical polar coordinates. The abnormally high values in phonon enhancement factor exhibited in certain directions for the phonon modes are interpreted as due to caustics occurring in the geometrical acoustics approximation adopted in the computational analysis. The results in LSCO and YBCO are found to be similar to those in BSCCO.  相似文献   

16.
The classical method of separation of variables in conjunction with the translational addition theorem for cylindrical wave functions are employed to obtain an exact solution for two-dimensional interaction of a harmonic plane acoustic wave with an infinitely long (visco)elastic circular cylinder which is eccentrically coated by another (visco)elastic material and is submerged in an ideal unbounded acoustic medium. The novel features of Havriliak-Negami model for dynamic viscoelastic material behaviour are used to take the rheological properties of the coating (and/or core) material into consideration. The analytical results are illustrated with numerical examples in which a steel rod eccentrically coated with (an eccentric steel shell filled with) dissipative materials of distinct viscoelastic properties is insonified by plane sound waves at selected angles of incidence. The effects of incident wave frequency, angle of incidence, core eccentricity and dynamic viscoelastic material properties on the backscattered form function spectra are examined. Limiting cases are considered and fair agreements with available solutions are obtained.  相似文献   

17.
The phonon spectrum and phonon density of states of ?-GaSe layered semiconductor have been studied from the first principles in the linear-response approximation. The elastic constants and acoustic velocities along and across layers have been determined. The study of the equilibrium structure and phonon spectrum of the (0001) surface of ?-GaSe has demonstrated that the volume and surface structural dynamic properties of these crystals differ insignificantly. The calculated frequencies and symmetries of the phonon modes in the center of the Brillouin zone are in good agreement with the experimental data obtained from the Raman scattering and infrared spectra.  相似文献   

18.
The structural, mechanical and thermodynamic properties of copper scandium CuSc intermetallic compound under temperature and pressure have been investigated using the plane wave (PW) - pseudopotential (PP) approach in the framework of the density functional theory (DFT). The structural parameters at equilibrium, the elastic moduli, the mechanical stability criteria and the sound velocity are studied in the pressure range 0–12 GPa. In addition, the heat capacity, the Grüneisen parameter, the Debye temperature, the entropy, and the thermal expansion coefficient are studied for temperatures ranging from 0 up to 1000 K. The equilibrium lattice parameter found is around 3.261 Å. It is in good agreement with the experimental one of 3.25 Å reported in the literature. According to the generalized elastic stability criteria, we predict the occurrence of a phase transition of the B2-type structure at 25.5 GPa. At room temperature and zero-pressure, the isothermal bulk modulus and the Grüneisen parameter found were 80.86 GPa and 2.04 respectively.  相似文献   

19.
The directional dependence of the phonon mode frequencies is calculated in the three principal planes of biaxial sodium nitrite at 7 and 300 K, using the lattice mode parameters determined from the simulation of the infrared reflectivity spectra polarised along the three cristallographic axes. Good agreement is obtained between the calculated and experimental infrared reflectivity spectra for different orientations of the wave vector in the a-c plane of sodium nitrite.  相似文献   

20.
叶振强  曹炳阳  过增元 《物理学报》2014,63(15):154704-154704
声子是石墨烯导热过程中的主要载体,而声子的弛豫时间又是其中最基本、最重要的物理量.本文采用简正模式分解法研究了石墨烯声子的弛豫时间,并且借此分析了不同声子在导热过程中的贡献.该方法通过平衡分子动力学模拟实现,首先通过模拟得到单个声子的能量自相关函数衰减曲线,并进一步采用拟合和积分两种方法得到单个声子的弛豫时间.然后,研究了弛豫时间与波矢、频率和温度的关系.结果发现,弛豫时间随波矢的变化与对应的色散关系相近,弛豫时间与频率和温度的关系符合理论模型:1/τ=νnTm,其中声学支的n为1.56,而光学支结果较为发散,指数m对于不同声子支结果略有不同.最后,还研究了不同频率声子对导热的贡献,发现低频声子在态密度上占有绝对优势,并且其弛豫时间整体高于高频声子,所以低频声子对导热的贡献占据主导地位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号