首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent controversy on the bandgap of InN is addressed, with reference to optical data on single crystalline thin film samples grown on sapphire. The optical absorption spectra deduced from transmission data or spectroscopic ellipsometry are consistent with a lowest bandgap around 0.7 eV in the low doping limit. Further, these data from a number of different independent authors and samples give values for the absorption coefficient within a factor 2 well above the absorption edge, supporting an intrinsic direct bandgap process. The presence of Mie resonances due to In inclusions in the InN matrix affects the shape of the absorption above the edge, but is less relevant for the discussion of the bandgap for pure InN. The alternative model of a deep level to conduction band transition requires the presence of a deep donor at a concentration close to 1020 cm−3; in addition this concentration has to be the same within a factor 2 in all samples studied so far. This appears implausible, and no such deep donor could so far be identified from SIMS data in the highest quality samples studied. The line shape of the photoluminescence spectra can be quite well reproduced in a model for the optical transitions from the conduction band states to localized states above the valence band, including the Coulomb effects of the impurity potentials. A value of 0.69 eV for the bandgap of pure InN is deduced at 2 K. For samples that appear to be only weakly degenerate n-type two narrow peaks are observed in the photoluminescence at low temperature, assigned to conduction band—acceptor transitions. These peaks can hardly be explained in the deep level model. Recent cathodoluminescence data on highly n-doped InN films showing that the emission appears to be concentrated around In inclusions can also be explained as near bandgap recombination, considering the plausible enhancement due to interface plasmons. Finally, recent photoluminescence data on quantum structures based on InN and InGaN with a high In content appear to be consistent with moderate upshifts of the emission from a 0.7 eV value due to electron confinement.  相似文献   

2.
Direct reflectance, thermoreflectance, and electroreflectance have been measured for MnO, CoO, and NiO above the fundamental edge. Spectra of all three materials support a model containing both localized and one-electron band states. In MnO peaks with temperature coefficients of ~ 10?3 eV/K were observed at 5.7 and 6.9 eV, temperature-independent structure occurred at 5.4, 6.3, and 7.2 eV, and spectral features with indeterminate temperature dependence were seen at 4.6 and 5.5 eV. The temperature-dependent structure was assigned to one-electron interband transitions associated with anion 2p and cation 4s states; the temperature independent structure was assigned to crystal field split localized interionic transitions between the 3d-states of neighboring Mn ions. Thermoreflectance spectra for CoO exhibited temperature dependent structure (9.5 × × 10?4 eV/K at 5.0, 6.0, and 7.2 eV. A strong, temperature dependent electroreflectance oscillation was seen in NiO near 6.2 eV. On the basis of these data the interband gap between the anion 2p and cation 4s bands was determined to be 5.7 eV in MnO, 6.0 eV in CoO, and 6.2 eV in NiO.  相似文献   

3.
A method of luminescent UV and VUV spectroscopy was used to study the evolution of color centers in anion-defective alumina single crystals exposed to high doses of gamma-radiation. A sharp drop in the intensity of the emission bands and, therefore, the concentration of F+ and F-centers associated with the formation of aggregate F2-type centers was found. The aggregate centers create an additional emission band in the range of (1.8–2.8) eV. When the crystals are exposed to middle and high doses, the photoluminescence (PL) intensity is the highest in the emission band of F22+-centers, which indicates a high concentration of the aggregates from singly charged oxygen vacancies (of F+-centers). When PL of the crystals exposed to high doses is excited with synchrotron radiation of the VUV range, a wide emission band in the red and near infrared (NIR) regions is registered. The centers related presumably to impurity defects, their aggregates and clusters consisting of several oxygen vacancies are responsible for this emission band.  相似文献   

4.
It has been shown using atomic-force microscopy that the PbI2 impurity is embedded in the CdI2 crystal lattice in the form of nanocrystalline inclusions. The model of a high-energy cation exciton related to the 3 P 2 state of a free Pb2+ ion has been considered for the impurity absorption (excitation) band at 3.23 eV. The resonance narrow photoluminescence bands with the split absorption band at 3.12 and 3.20 eV have been compared with the emission of a free Frenkel exciton. It has been demonstrated that, in the temperature range 25–45 K, there arises a self-trapped exciton state, and the main role in its formation is played by the bending vibrations of the CdI2 crystal lattice. The potential barrier separating the self-trapped state from the free exciton is 23 meV. The photoluminescence band at 2.4 eV is assigned to the emission of the self-trapped high-energy cation exciton of PbI2 in the CdI2 crystal lattice.  相似文献   

5.
In addition to the narrow zero-phonon line at the photoionisation band edge at 2.4377 eV reported in absorption measurements of Ni-doped ZnS, another two sharp lines at 2.4268 and 2.4325 eV in the electroabsorption spectrum have been detected for the first time. At the bottom of the photoinization band a new structure has also been observed, which consists of a zero-phonon line at 3.3897 eV and its LO-phonon sidebands. The zero-phonon lines in the photoionization band are attributed to transitions into hydrogen-like states of a hole, loosely bound to a Ni1+ ion which is either in the ground 2T2 or high-lying excited 2E states.  相似文献   

6.
Single crystals of thorium dioxide ThO2, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L3, M3, M4, and M5 X‐ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n‐type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Three sharp absorption features in the energy range 2.36–2.55 eV have been detected in the transmission spectrum of Co-diffused ZnSe, and a number of luminescence transitions originating from the lowest of these states at 2.361 eV have been observed. Photoluminescence excitation spectra prove that these are high energy excited states of the Co2+Zn impurity, a conclusion confirmed by comparison of measured and predicted luminescence energies. This represents the first identification of luminescence branching from a higher excited state of a transition metal ion in any semiconductor. The sharp, weakly phonon-coupled transitions involve either intra-impurity excitation or transitions from the impurity to localised states split off from a minimum in the conduction band. The implications of these observations for the mechanism of host-impurity energy transfer and for the nature of the excited state wavefunctions are discussed.  相似文献   

8.
The temperature dependence, injection level dependence, and modulation frequency response of cathodoluminescence have been measured in Te-rich CdTe:In for materials with In concentrations ranging from 3 × 1015cm?3 to 1 × 1018cm?3. In lightly-doped material, the 80 K luminescence shows sharp band-edge emission near 1.57 eV and a broad impurity-defect band near 1.4 eV. As temperature increases, the 1.4 eV band quenches out, leaving only the band-edge emission. In heavily-doped material, the band- edge emission is absent and the 80 K luminescence shows only the 1.4 eV band. As the temperature increases from 80 K to 300 K, the 1.4 eV band does not quench out but rather undergoes a complex evolution into a long tail on the band-edge emission which begins to appear at approximately 140 K. At a temperature of 200 K, where the luminescence of the heavily-doped material consists of a broad but structured band approximately 0.2 eV in width, frequency response measurements indicate that band-to-band transitions contribute to the high-energy part of the broad luminescence while the remainder of the band results from slower transitions. The frequency and temperature dependences suggest that the luminescence involves an impurity level that has merged with a band edge at an In concentration of 1 × 1018cm3. We interpret this behavior as suggesting that the 1.4 eV luminescence in Te-rich CdTe:In results from a partially-forbidden transition between conduction band and a deep acceptor level rather than from an intracenter type of transition.  相似文献   

9.
Luminescence and thermally stimulated luminescence (TL) of BeO: Mg crystals are studied at T = 6–380 K. The TL glow curves and the spectra of luminescence (1.2–6.5 eV), luminescence excitation, and reflection (3.7–20 eV) are obtained. It is found that the introduction of an isovalent magnesium impurity into BeO leads to the appearance of three new broad luminescence bands at 6.2–6.3, 4.3–4.4, and 1.9–2.6 eV. The first two are attributed to the radiative annihilation of a relaxed near-impurity (Mg) exciton, the excited state of which is formed as a result of energy transfer by free excitons. The impurity VUV and UV bands are compared with those for the intrinsic luminescence of BeO caused by the radiative annihilation of self-trapped excitons (STE) of two kinds: the band at 6.2–6.3 eV of BeO: Mg is compared with the band at 6.7 eV (STE1) of BeO, and the band at 4.3–4.4 eV is compared with the band at 4.9 eV (STE2) of BeO. In the visible region, the luminescence spectrum is due to a superposition of intracenter transitions in an impurity complex including a magnesium ion. The manifestation of X-ray-induced luminescence bands at T = 6 K in BeO: Mg indicates their excitation during band-to-band transitions and in recombination processes. The energy characteristics of the impurity states in BeO: Mg are determined; the effect of the isovalent impurity on the fluctuation rearrangement of the BeO: Mg structure in the thermal transformation region of STE1 → STE2 is revealed.  相似文献   

10.
We present the spin and orbitally resolved local density of states (LDOS) for a single Mn impurity and for two nearby Mn impurities in GaAs. The GaAs host is described by a sp(3) tight-binding Hamiltonian, and the Mn impurity is described by a local p-d hybridization and on-site potential. Local spin-polarized resonances within the valence bands significantly enhance the LDOS near the band edge. For two nearby parallel Mn moments the acceptor states hybridize and split in energy. Thus scanning tunneling spectroscopy can directly measure the Mn-Mn interaction as a function of distance.  相似文献   

11.
The direct polyol method is used to prepare copper aluminium sulfide CuAlS2 nanowires. The lattice constants of CuAlS2 nanowires calculated from powder X-ray diffraction data indicates chalcopyrite structure. The CuAlS2 nanowires are uniformly in shape and their dimensions are about 50 nm in diameter and several of micrometers in length. The Photoluminescence (PL) spectrum of CuAlS2 nanowires show a sharp absorption edge at 358.96 nm and a strong near band edge emission at 3.46 eV. The direct energy gap Eg of the sample has been calculated as 3.48 eV, that corresponding to the photoluminescence study. A possible formation mechanism of copper aluminium sulfide is proposed.  相似文献   

12.
T. Kawai  Y. Kishimoto  K. Kifune 《哲学杂志》2013,93(33):4088-4097
Photoluminescence and excitation spectra have been investigated for undoped and nitrogen-doped TiO2 powders at low temperatures. A broad luminescence band peaking at 2.25?eV is observed in the undoped TiO2 powders. The 2.25?eV luminescence band exhibits a sharp rise from 3.34?eV in the excitation spectrum reflecting the fundamental absorption edge of anatase TiO2. On the other hand, the N-doped TiO2 powders obtained by annealing with urea at 350 and 500°C exhibit broad luminescence bands around 2.89 and 2.63?eV, respectively. The excitation spectra for these luminescence bands rise from the lower energy side of the fundamental absorption edge of anatase TiO2. The origin of the luminescence bands and N-related energy levels formed in the band-gap of TiO2 are discussed.  相似文献   

13.
A broad charge transfer band is observed in the photoluminescence excitation (PLE) spectrum of the 2.5 μ Ni2+ luminescence in ZnSe : Ni. This band lies above the highest energy d-d excitation bands and exhibits a ZPL at 1.8163 eV and LO(#38;0lambda;) phonon replicas at higher energy. In contrast, PLE spectra of Co2+ luminescence in ZnSe:Co contain only d-d excitation bands. The charge transfer band in ZnSe:Ni is interpreted as evidence for bound exciton formation at the Ni site. The recombination energy of this exciton is transferred efficiently to the excited d-band states of the Ni ion, leading to characteristic Ni2+d-d luminescence.  相似文献   

14.
Fluorescent characteristics of a series of powder CaF2: Mn phosphors (from 0.01 to 2.47 wt. % of Mn in the mixture) excited by VUV radiation with quantum energies up to 14 eV at 293 K and up to 12 eV at 85 K are measured. Narrow excitation bands of Mn2+ centers found at 7.9 and 8.6 eV (at 293 K) are assigned to partially forbidden transitions of electrons from the ground state 6 S split by the crystalline field (10 Dq=0.71 eV from the literature) in two sublevels to the excited level corresponding to the 6 D term of a free Mn2+ ion (3d 5 → 3d 44s transitions). A wide nonelementary excitation band in the region of 9.1–10.3 eV is interpreted as photogeneration of near-activator D-excitations: allowed transitions of electrons from levels that are split from the top of the valence band under the influence of an impurity ion to the free 4s-orbital of a Mn2+ ion. Channels of energy transport in the CaF2: Mn system are briefly analyzed.  相似文献   

15.
The properties of silver-silicon interfaces formed by cleaving n-type silicon in ultra high vacuum (UHV) in a stream of evaporating silver atoms were studied. The barrier heights of these contacts were measured at different temperatures by using C-V techniques. All measurements were performed in UHV. The dependence of the barrier height upon temperature did not follow the temperature dependence of the Si band gap as it is usually found. The measured temperature behavior depended on the roughness of the Si surface. The temperature behavior can be explained by assuming a specific band structure of the interface states. For Ag contacts on atomically smooth n-type Si, the interface states were found to be arranged in two bands, one band 4 × 10?3 eV wide with acceptor type states 0.18 eV below the intrinsic level Ei and a density of 1017 states/cm2 eV, and the other 1 eV wide with donor type states with its upper edge 0.28 eV below Ei, and a density of 4 × 1014 states/cm2eV.  相似文献   

16.
The electronic structure and interfacial chemistry of thin manganese films on p-Si (1 0 0) have been studied by photoelectron spectroscopy measurements using synchrotron radiation of 134 eV and from X-ray diffraction data. The Mn/p-Si structures have been irradiated from swift heavy ions (∼100 MeV) of Fe7+ with a fluence of 1 × 1014 ions/cm2. Evolution of valence band spectrum with a sharp Fermi edge has been obtained. The observed Mn 3d peak has been related to the bonding of Mn 3d-Si 3sp states. Mn 3p (46.4 eV), Mn 3s (81.4 eV) and Si 2p (99.5 eV) core levels have also been observed which show a binding energy shift towards lower side as compared to their corresponding elemental values. From the photoelectron spectroscopic and X-ray diffraction results, Mn5Si3 metallic phase of manganese silicide has been found. The silicide phase has been found to grow on the irradiation.  相似文献   

17.
We have investigated the temperature-dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x≈0.1–0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. All the layers doped with manganese exhibited n-type conductivity with Curie temperature over 350 K. The efficient PL are peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. It was found that the blue band at 3.29 eV is mostly associated with the formation complexes between donors (e.g., N vacancy) and Mn acceptors, which results in forming donor levels at 0.23 eV below the conduction band edge. The yellow band is attributed to intrinsic gallium defects. The broad band at 1.86 eV is attributed to inner 5D state transition (T2 to E) of Mn ions.  相似文献   

18.
The dependences of the maximum and the half-width of near band-edge photoluminescence of semi-insulating undoped-GaAs crystals at 77 K on the concentration of background acceptor impurities and the level of excitation in the range from 3×1021 to 6×1022 quantum/(cm2 s) are investigated. The observed dependences are explained by formation of the density tails of states as a result of fluctuations of impurity concentration and participation of localized states of the donor impurity band in radiative transitions. Reduction of many-particle interaction at increasing of N can be connected with increasing of shielding of charge carriers by atoms of impurity.  相似文献   

19.
The luminescence properties of calcium orthoborate Ca3(BO3)2 doped with cerium are studied upon x-ray (~30 keV) and VUV (3.5–15 eV) synchrotron excitation. The emission bands peaked at 392 and 420 nm are attributed to interconfigurational transitions of Ce3+ ions. The short-wavelength emission band at 340 nm is caused by radiative decay of exciton-like states. The fundamental absorption edge of Ca3(BO3)2 is found to be near 7.1 eV. Based on thermoluminescence data and other information, the behavior of defects in Ca3(BO3)2:Ce3+ is studied.  相似文献   

20.
Thin (~60 nm) germanium layers supersaturated with a manganese impurity of 10–16 at % have been studied by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The layers have been fabricated by pulsed laser deposition onto a semi-insulating single-crystal GaAs substrate. The results of XPS analysis of the Ge:Mn layers reveal a change in the line shape of germanium and manganese (2p) in the surface region compared to deeper layers, which indicates a transition from the oxidized form of the base material (Ge2+ and Ge1+) and impurity (Mn2+) near the surface to the unoxidized state of germanium (Ge 0) and manganese (Mn0) in the interior of the layer. The XPS spectra of the valence electrons of the Ge:Mn structure indicate that the density of states in the valence band of the ferromagnetic Ge:Mn structures is caused not only by mechanical mixing of germanium and manganese. The composition of heterogeneous inclusions in Ge:Mn films has been studied using scanning Auger microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号