首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

2.
Functionalization of the nitrogen atoms in the hafnocene oxamidide complexes [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-3-(t)Bu)Hf](2)(N(2)C(2)O(2)) and [(η(5)-C(5)Me(4)H)(2)Hf](2)(N(2)C(2)O(2)), prepared from CO-induced N(2) bond cleavage, was explored by cycloaddition and by formal 1,2-addition chemistry. The ansa-hafnocene variant, [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-3-(t)Bu)Hf](2)(N(2)C(2)O(2)), undergoes facile cycloaddition with heterocumulenes such as (t)BuNCO and CO(2) to form new N-C and Hf-O bonds. Both products were crystallographically characterized, and the latter reaction demonstrates that an organic ligand can be synthesized from three abundant and often inert small molecules: N(2), CO, and CO(2). Treatment of [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-3-(t)Bu)Hf](2)(N(2)C(2)O(2)) with I(2) yielded the monomeric iodohafnocene isocyanate, Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-3-(t)Bu)Hf(I)(NCO), demonstrating that C-C bond formation is reversible. Alkylation of the oxamidide ligand in [(η(5)-C(5)Me(4)H)(2)Hf](2)(N(2)C(2)O(2)) was explored due to the high symmetry of the complex. A host of sequential 1,2-addition reactions with various alkyl halides was discovered and both N- and N,N'-alkylated products were obtained. Treatment with Br?nsted acids such as HCl or ethanol liberates the free oxamides, H(R(1))NC(O)C(O)N(R(2))H, which are useful precursors for N,N'-diamines, N-heterocyclic carbenes, and other heterocycles. Oxamidide functionalization in [(η(5)-C(5)Me(4)H)(2)Hf](2)(N(2)C(2)O(2)) was also accomplished with silanes and terminal alkynes, resulting in additional N-Si and N-H bond formation, respectively.  相似文献   

3.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

4.
Reaction of two equivalents of [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) or [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) with 1,4-dicyanobenzene leads to the formation of the novel 1,4-phenylenediketimide-bridged bimetallic organoactinide complexes [{(C(5)Me(4)Et)(2)(Cl)U}(2)(mu-{N==C(CH(3))-C(6)H(4)-(CH(3))C==N})] (8) and [{(C(5)Me(5))(2)(Br)Th}(2)(mu-{N==C(CH(3))-C(6)H(4)- (CH(3))C==N})] (9), respectively. These complexes were structurally characterized by single-crystal X-ray diffraction and NMR spectroscopy. Metal-metal interactions in these isovalent bimetallic systems were assessed by means of cyclic voltammetry, UV-visible/NIR absorption spectroscopy, and variable-temperature magnetic susceptibility. Although evidence for magnetic coupling between metal centers in the bimetallic U(IV)/U(IV) (5f(2)-5f(2)) complex is ambiguous, the complex displays appreciable electronic communication between the metal centers through the pi system of the dianionic diketimide bridging ligand, as judged by voltammetry. The transition intensities of the f-f bands for the bimetallic U(IV)/U(IV) system decrease substantially compared to the related monometallic ketimide chloride complex, [(C(5)Me(5))(2)U(Cl){-N==C(CH(3))-(3,4,5-F(3)-C(6)H(2))}] (11). Also reported herein are new synthetic routes to the actinide starting materials [(C(5)Me(4)Et)(2)U(CH(3))(Cl)] (6) and [(C(5)Me(5))(2)Th(CH(3))(Br)] (7) in addition to the syntheses and structures of the monometallic uranium complexes [(C(5)Me(4)Et)(2)UCl(2)] (3), [(C(5)Me(4)Et)(2)U(CH(3))(2)] (4), [(C(5)Me(4)Et)(2)U{-N==C(CH(3))-C(6)H(4)-C==N}(2)] (10), and 11.  相似文献   

5.
The reaction of 1-chloro-2-(trimethylsilyl)-1-boracyclohexa-2,5-diene with [(n)Bu(4)N]C≡N provides the 1-borabenzonitrile salt [(n)Bu(4)N][C(5)H(5)BC≡N] which in turn reacts with [Ru(4)(μ-Cl)(4)(η-C(5)Me(5))(4)] to afford the sandwich complex [Ru(η(6)-C(5)H(5)BC≡N)(η-C(5)Me(5))]. The bonding of 1-borabenzonitrile is discussed with recourse to crystallographic data for [(n)Bu(4)N][C(5)H(5)BC≡N] and [Ru(η(6)-C(5)H(5)BC≡N)(η-C(5)Me(5))].  相似文献   

6.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] ( 1‐Cl ), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ ( 1‐py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.  相似文献   

7.
The transmetalation reaction between [(η(7) -C(7) H(7) )ZrCl(tmeda)] (1; tmeda=N,N,N',N'-tetramethylethylenediamine) and various phospholide anions leads to a new class of mixed sandwich complexes: [(η(7)-C(7)H(7))Zr(η(5)-C(4)PMe(4))] (2), [(η(7)-C(7)H(7))Zr(η(5)-C(4)PH(2)Me(2))] (3) and [(η(7)-C(7)H(7))Zr(η(5)-C(4)PPhHMe(2))] (4). The presence of Lewis basic phosphorus atoms and Lewis acidic zirconium atoms allows ambiphilic behaviour to be observed, and X-ray diffraction analysis reveals dimeric arrangements for 2 and 3 with long intermolecular Zr-P bonds, whereas 4 remains monomeric in the solid state. DFT calculations indicate that the metal-phosphorus interaction is weak, and accordingly, complexes 2-4 act as monodentate ligands upon reaction with [W(CO)(5)(thf)]. The resulting complexes [W(CO)(5)(L)] 5-7 (L=2-4) were studied by IR spectroscopy and compared with the [W(CO)(5) ] complex 9, containing the phosphane-functionalised trozircene [(η(7)-C(7)H(7))Zr(η(5)-C(5)H(4)PPh(2))] (8). They all show a close resemblance to simple phosphanes, such as PMe(3) , although molecular orbital analysis of 2 reveals that the free electron pair in the phosphatrozircenes is not the HOMO. Four equivalents of 2 can replace 1,4-cyclooctadiene (COD) in [Ni(cod)(2)] to form the homoleptic, distorted tetrahedral complex [Ni{2}(4)] (10).  相似文献   

8.
The platinum(0) monocarbonyl complex, [(Cy(3)P)(2)Pt(CO)], was synthesized by reaction of [(Cy(3)P)(2)Pt] with [(η(5)-C(5)Me(5))Ir(CO)(2)] and subsequent irradiation. X-ray structure analysis was performed and represents the first structural evidence of a platinum(0) monocarbonyl complex bearing two free phosphine ligands. Its corresponding dicarbonyl complex [(Cy(3)P)(2)Pt(CO)(2)] was synthesized by treatment of [(Cy(3)P)(2)Pt] with CO at -40 °C and confirmed by X-ray structure analysis.  相似文献   

9.
Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(μ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.  相似文献   

10.
The osma(II)cycles [Os(phpy)(LL)(2)]PF(6) (LL = 1,10-phen (3a) and 4,4'-Me(2)-2,2'-bpy (3b)) are made from [(eta(6)-C(6)H(6))Os(micro-Cl)Cl](2) (1) either via transmetalation using the [Hg(phpy)(2)] organomercurial in MeOH or via the sp(2)-C-H bond cleavage of 2-phenylpyridine (phpyH) in MeCN to afford [(eta(6)-C(6)H(6))Os(phpy)Cl] or [(eta(6)-C(6)H(6))Os(phpy)(MeCN)]PF(6), respectively. The latter two react cleanly with LL to give 3a and 3b, the M(II/III) redox potentials of which equal 30 and -100 mV (vs Ag/AgCl), respectively. The electrochemically made Os(III) species oxidize rapidly reduced glucose oxidase. The second-order rate constant equals 1.1 x 10(7) M(-)(1) s(-)(1) for 3a at 25 degrees C, pH 7.  相似文献   

11.
The dimeric η(6)-hexamethylbenzene ruthenium(II) triazole compounds of formulation [{(η(6)-C(6)Me(6))Ru(N(3)C(2)(CO(2)R)(2))}(2)(μC(2)O(4))] have been synthesized by 1,3-diploar cycloadditions of coordinated azido compound [{(η(6)-C(6)Me(6))Ru(L(1))N(3)}] (1) with substituted acetylene, RO(2)CC(2)CO(2)R via unexpected oxidation of the coordinated ligand to oxalate (where; L(1) = 5-hydroxy-2-(hydroxymethyl)-4-pyrone; R = Me, 3 or Et, 4). In contrast, a similar 1,3-dipolar cycloaddition reaction of [{(η(6)-C(6)Me(6))Ru(L(2))N(3)}] (2) (where; L(2) = tropolone) with acetylene yielded the monomeric triazole compound [(η(6)-C(6)Me(6))Ru(L(2)){N(3)C(2)(CO(2)R)(2)}] (where; R = Me, 5; Et, 6). The compounds were characterized by spectroscopy and the structures of representative compounds 4 and 6 have been determined by single crystal X-ray diffraction. The two ruthenium centres in the compound 4, are linked by a tetra-dentate oxalate group. Both compounds, 4 and 6, crystallized in a triclinic space group P-1.  相似文献   

12.
One-electron oxidation of [(Me(n)tpa)Ir(I)(ethene)]+ complexes (Me(3)tpa = N,N,N-tri(6-methyl-2-pyridylmethyl)amine; Me(2)tpa = N-(2-pyridylmethyl)-N,N,-di[(6-methyl-2-pyridyl)methyl]-amine) results in relatively stable, five-coordinate Ir(II)-olefin species [(Me(n)tpa)Ir(II)(ethene)](2+) (1(2+): n = 3; 2(2+): n = 2). These contain a "vacant site" at iridium and a "non-innocent" ethene fragment, allowing radical type addition reactions at both the metal and the ethene ligand. The balance between metal- and ligand-centered radical behavior is influenced by the donor capacity of the solvent. In weakly coordinating solvents, 1(2+) and 2(2+) behave as moderately reactive metallo-radicals. Radical coupling of 1(2+) with NO in acetone occurs at the metal, resulting in dissociation of ethene and formation of the stable nitrosyl complex [(Me(3)tpa)Ir(NO)](2+) (6(2+)). In the coordinating solvent MeCN, 1(2+) generates more reactive radicals; [(Me(3)tpa)Ir(MeCN)(ethene)](2+) (9(2+)) by MeCN coordination, and [(Me(3)tpa)Ir(II)(MeCN)](2+) (10(2+)) by substitution of MeCN for ethene. Complex 10(2+) is a metallo-radical, like 1(2+) but more reactive. DFT calculations indicate that 9(2+) is intermediate between the slipped-olefin Ir(II)(CH(2)=CH(2)) and ethyl radical Ir(III)-CH(2)-CH(2). resonance structures, of which the latter prevails. The ethyl radical character of 9(2+) allows radical type addition reactions at the ethene ligand. Complex 2(2+) behaves similarly in MeCN. In the absence of further reagents, 1(2+) and 2(2+) convert to the ethylene bridged species [(Me(n)tpa)(MeCN)Ir(III)(mu(2)-C(2)H(4))Ir(III)(MeCN)(Me(3)tpa)](4+) (n = 3: 3(4+); n = 2: 4(4+)) in MeCN. In the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxo), formation of 3(4+) from 1(2+) in MeCN is completely suppressed and only [(Me(3)tpa)Ir(III)(TEMPO(-))(MeCN)](2+) (7(2+)) is formed. This is thought to proceed via radical coupling of TEMPO at the metal center of 10(2+). In the presence of water, hydrolysis of the coordinated acetonitrile fragment of 7(2+) results in the acetamido complex [(Me(3)tpa)Ir(III)(NHC(O)CH(3)))(TEMPOH)](2+) (8(2+)).  相似文献   

13.
The reaction of [(eta(6)-arene)RuCl(2)](2) (arene = C(6)Me(6), 1,4-MeC(6)H(4)CHMe(2)) with a large excess of the dianion of bis(2-mercaptoethyl) sulfide, (HSCH(2)CH(2))(2)S, obtained from deprotonation of the dithiol with freshly prepared NaOMe, gives the deep red, monomeric complexes [(eta(6)-arene)Ru(eta(3)-C(4)H(8)S(3))] (arene = C(6)Me(6) (5), 1,4-MeC(6)H(4)CHMe(2) (6)) in which the dianion is bound to the metal atom through one thioether and two thiolate sulfur atoms. Complex 5 reacts with [(eta(6)-C(6)Me(6))RuCl(2)](2) (4) in a 2:1 mole ratio to give a quantitative yield of the chloride salt of a binuclear cation [((eta(6)-C(6)Me(6))Ru)(2)Cl(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](+) (7) in which the thiolate sulfur atoms of the [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(8)S(3))] group bridge to a (eta(6)-C(6)Me(6))RuCl unit. This compound is also obtained directly from the reaction of 4 with the dithiolate, if the Ru dimer is used in large excess. The binuclear complex [((eta(6)-C(6)Me(6))Ru)(2)(MeCN)(mu(2)-eta(2):eta(3)-C(4)H(8)S(3))](PF(6))(2).MeCN, (9)(PF(6))(2).MeCN, is obtained by treatment of (7)Cl with NH(4)PF(6) in acetonitrile. Protonation of 5 with HCl gave the mono- and diprotonated derivatives viz. [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(9)S(3))]Cl, (8)Cl, and [(eta(6)-C(6)Me(6))Ru(eta(3)-C(4)H(10)S(3))]Cl(2), (10)Cl(2), respectively. The reaction of 5 with methyl iodide gives both the mono- and di-S-methylated derivatives. Treatment of 5 with dibromoalkanes, Br(CH(2))(n)Br (n = 1-5), effects ring closure to give the (eta(6)-C(6)Me(6))Ru dications containing the trithia mesocyclic zS3 (z = 8-12) ligands, isolated as their PF(6) salts. The X-ray crystal structures of 5, 6, the solvates of (7)Cl and (9)(PF(6))(2), and the trithia mesocyclic Ru complexes (eta(6)-C(6)Me(6))Ru(zS3)(PF(6))(2) (z = 8-11) are reported.  相似文献   

14.
Reaction of [Cp*Ir(micro-H)](2) (5) (Cp* = eta(5)-C(5)Me(5)) with bis(dimethylphosphino)methane (dmpm) gives a new neutral diiridium complex [(Cp*Ir)(2)(micro-dmpm)(micro-H)(2)] (3). Treatment of 3 with methyl triflate at -30 degrees C results in the formation of [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Me)(IrCp*)][OTf] (6). Warming a solution of above 0 degrees C brings about predominant generation of 32e(-) Ir(II)-Ir(II) species [(Cp*Ir)(micro-dmpm)(micro-H)(IrCp*)][OTf] (7). Further heating of the solution of 7 up to 30 degrees C for 14 h leads to quantitative formation of a new complex [(Cp*Ir)(H)(micro-Me(2)PCH(2)PMeCH(2))(micro-H)(IrCp*)][OTf] (8), which is formed by intramolecular oxidative addition of the methyl C-H bond of the dmpm ligand. Intermolecular C-H bond activation reactions with 7 are also examined. Reactions of 7 with aromatic molecules (benzene, toluene, furan, and pyridine) at room temperature result in the smooth sp(2) C-H activation to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(Ar)(IrCp*)][OTf] (Ar = Ph (9); Ar = m-Tol (10a) or p-Tol (10b); Ar = 2-Fur (11)) and [(Cp*Ir)(H)(micro-dmpm)(micro-C(5)H(4)N)(H)(IrCp*)][OTf] (12), respectively. Complex also reacts with cyclopentene at 0 degrees C to give [(Cp*Ir)(H)(micro-dmpm)(micro-H)(1-cyclopentenyl)(IrCp*)][OTf] (13). Structures of 3, 8 and 12 have been confirmed by X-ray analysis.  相似文献   

15.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

16.
Several new mono- and dinuclear eta (5)-pentamethylcyclopentadienyl (Cp*) iridium(III) complexes bearing 5-methyltetrazolate (MeCN 4 (-)) have been synthesized and their molecular and crystal structures have been determined. For complexes incorporating 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), both mononuclear kappa N (2)-coordinated and dinuclear mu-kappa N (1):kappa N (3)-bridging MeCN 4 complexes were obtained: [Cp*Ir(bpy or phen)(MeCN 4-kappa N (2))]PF 6 ( 1 or 3) and [{Cp*Ir(bpy or phen)} 2(mu-MeCN 4-kappa N (1):kappa N (3))](PF 6) 3 ( 2 or 4), respectively. It was confirmed by X-ray analysis that the dinuclear complex in 2 has a characteristic structure with a pyramidal pocket constructed from a mu-kappa N (1):kappa N (3)-bridging MeCN 4 (-) and two bpy ligands. In the case of analogous complexes with N, N-dimethyldithiocarbamate (Me 2dtc (-)), yellow platelet crystals of mononuclear kappa N (1)-coordinated complex, [Cp*Ir(Me 2dtc)(MeCN 4-kappa N (1))].HN 4CMe ( 5.HN 4CMe), and yellow prismatic crystals of dinuclear mu-kappa N (1):kappa N (4)-bridging one, [{Cp*Ir(Me 2dtc)} 2(mu-MeCN 4-kappa N (1):kappa N (4))]PF 6 ( 6), were deposited. The kappa N (1)- and kappa N (1):kappa N (4)-bonding modes of MeCN 4 (-) in these complexes presumably arise from the compactness of the Me 2dtc (-) coligand. 6 is the first example in which tetrazolates act as a mu-kappa N (1):kappa N (4)-bridging ligand. Furthermore, the molecular and crystal structures of dinuclear complexes having mu-kappa (2) S, N:kappa S-bridging 2-pyridinethiolate (2-Spy (-)) or 8-quinolinethiolate (8-Sqn (-)) ligands have been determined: [(Cp*Ir) 2(mu-2-Spy or 8-Sqn-kappa (2) S, N:kappa S) 2] ( 7 or 8). These thiolato-bridging complexes were stable toward the addition of 5-methyltetrazole (HN 4CMe), owing to the characteristic intramolecular stacking interaction between the pyridine or the quinoline rings. The 2-Spy complex of 7, however, reacted with an excess amount of Na(N 4CMe), resulting in cleavage of the IrN(py) bond and coordination of MeCN 4 (-) in the mu-kappa N (2):kappa N (3)-bridging mode: [(Cp*Ir) 2(mu-2-Spy-kappa S:kappa S) 2(mu-MeCN 4-kappa N (2):kappa N (3))]PF 6 ( 9). This bridging mode of MeCN 4 (-) was also observed in the triply bridging MeCN 4 complex: [(Cp*Ir) 2(mu-MeCN 4-kappa N (2):kappa N (3)) 3]PF 6 ( 10). In these various MeCN 4 complexes, the structural parameters of the MeCN 4 moiety were not perturbed by the difference in the bonding modes.  相似文献   

17.
The reaction of the cycloheptatrienylzirconium half-sandwich complex [(η(7)-C(7)H(7))ZrCl(tmeda)] (1) (tmeda = N,N,N',N'-tetramethylethylenediamine) with Li(Im(Dipp)N), generated from bis(2,6-diisopropylphenyl)imidazolin-2-imine (Im(Dipp)NH) with methyllithium, yields the imidazolin-2-iminato complex [(η(7)-C(7)H(7))Zr(Im(Dipp)N)(tmeda)] (2). The corresponding tmeda-free complex [(η(7)-C(7)H(7))Zr(Im(Dipp)N)] (5) can be synthesized via the 1,3-bis(trimethylsilyl)allyl complex [(η(7)-C(7)H(7))Zr{η(3)-C(3)H(3)(TMS)(2)}(THF)] (3; TMS = SiMe(3)), which undergoes an acid-base reaction with Im(Dipp)NH to form 5 and 1,3-bis(trimethylsilyl)propene. 5 exhibits an unusual one-legged piano stool ("pogo stick") geometry with a particularly short Zr-N bond of 1.997(2) ?. Addition of 2,6-dimethylphenyl or tert-butyl isocyanide affords the complexes [(η(7)-C(7)H(7))Zr(Im(Dipp)N)(CNR)] (R = o-Xy, 6; R = t-Bu, 7), while the reaction with 2,6-dimethylphenyl isocyanate results in a [2 + 2] cycloaddition to form the ureato(1-) complex [(η(7)-C(7)H(7))Zr{Im(Dipp)N(C═O)N-o-Xy}] (8). 5 can also act as an initiator for the ring-opening polymerization of ε-caprolactone. These reactivity patterns together with density functional theory calculations reveal a marked similarity of the bonding in imidazolin-2-iminato and conventional imido transition-metal complexes.  相似文献   

18.
The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-(PPh(2))C(6)H(3)] (10) (dppf = 1,1'-bis(diphenylphosphino)ferrocene; tBu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; Ph = phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(eta(5)-C(5)Me(5))RhCl(2)}(2)] (18), [(Et(2)S)(2)PtCl(2)] (20) or [(tht)AuC[triple bond]C-bpy] (24) (Me = methyl; Et = ethyl; tht = tetrahydrothiophene; bpy = 2,2'-bipyridyl-5-yl). Complexes [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)RhCl(2)(eta(5)-C(5)Me(5))}C(6)H(3)] (19), [{1-[(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C]-3-[(tBu(2)bpy)(CO)(3)ReC[triple bond]C]-5-(PPh(2))C(6)H(3)}(2)PtCl(2)] (21), and [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)AuC[triple bond]C-bpy}C(6)H(3)] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu(2)bpy)(CO)(3)ReC[triple bond]C-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)(4)] (27), (nbd = 1,5-norbornadiene), or [{[Ti](mu-sigma,pi-C[triple bond]CSiMe(3))(2)}Cu(N[triple bond]CMe)][PF(6)] (29) ([Ti] = (eta(5)-C(5)H(4)SiMe(3))(2)Ti) to 25. The identities of 5, 6, 8, 10-12, 14-16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy.  相似文献   

19.
The electronic structures of the highly air-sensitive intermediates (N[caret]N) (C(5)Me(5))Rh, (N[caret]N = 2,2'-bipyridine (bpy), 2,2'-bipyrimidine (bpym), 2,2'-bipyrazine (bpz) and 3,3'-bipyridazine (bpdz)) of hydride transfer catalysis schemes were studied through resonance Raman (rR) spectroscopy and through EPR of the reduced forms [(N[caret]N) (C(5)Me(5))Rh](.-). The rR results are compatible with a predominant MLCT character of the lowest excited states [ (N[caret]N) (C(5)Me(5))Rh]*, and the EPR spectra of the reduced states reveal the presence of anion radical ligands, (N[caret]N) (.-), coordinated by unusually electron rich rhodium(i) centres. The experimental results, including the assignments of electronic transitions, are supported by DFT calculations for the model compounds [(N[caret]N)(C(5)H(5))Rh](o)/(.-), (N[caret]N) = bpy or bpym. The calculations confirm a significant but not complete mixing of metal and ligand orbitals in the lowest unoccupied MO which still retains about 3/4 pi* (N[caret]N) character. DFT calculations on (bpy)(C(5)H(5))M and [(bpy)(C(5)H(5))ClM](+), M = Co, Rh, Ir, agree with the experimental results such as the differences between the homologues, especially the different LUMO characters of the precursor cations in the case of Co-->d(M)) and Rh or Ir (-->pi*(bpy)).  相似文献   

20.
Several azaheterometallocubane complexes containing [MTi3N4] cores have been prepared by the reaction of [{Ti(eta5-C5Me5)(mu-NH)}3(mu3-N)] (1) with zinc(II) and copper(I) derivatives. The treatment of 1 with zinc dichloride in toluene at room temperature produces the adduct [Cl2Zn{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (2). Attempts to crystallize 2 in dichloromethane gave yellow crystals of the ammonia adduct [(H3N)Cl2Zn{(mu3-NH)Ti3(eta5-C5Me5)3(mu-NH)2(mu3-N)}] (3). The analogous reaction of 1 with alkyl, (trimethylsilyl)cyclopentadienyl, or amido zinc complexes [ZnR2] leads to the cube-type derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = CH2SiMe3 (5), CH2Ph (6), Me (7), C5H4SiMe3 (8), N(SiMe3)2 (9)) via RH elimination. The amido complex 9 decomposes in the presence of ambient light to generate the alkyl derivative [{Me3Si(H)N(Me)2SiCH2}Zn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (10). The chloride complex 2 reacts with lithium cyclopentadienyl or lithium indenyl reagents to give the cyclopentadienyl or indenyl zinc derivatives [RZn{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (R = C5H5 (11), C9H7 (12)). Treatment of 1 with copper(I) halides in toluene at room temperature leads to the adducts [XCu{(mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N)}] (X = Cl (13), I (14)). Complex 13 reacts with lithium bis(trimethylsilyl)amido in toluene to give the precipitation of [{Cu(mu4-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}2] (15). Complex 15 is prepared in a higher yield through the reaction of 1 with [{CuN(SiMe3)2}4] in toluene at 150 degrees C. The addition of triphenylphosphane to 15 in toluene produces the single-cube compound [(Ph3P)Cu{(mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)}] (16). The X-ray crystal structures of 3, 8, 9, and 15 have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号