首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The present paper covers electronic structures and spectra of the bases and the base pairs of nucleic acids calculated by using the INDO/S method. For free bases we give the energy levels of ground states and transition energies of low-lying excited states and discuss the band characters. The results indicate that the calculated spectra are in good agreement with experimental values. On the other hand, our calculations for A-T and G-C pairs are very beneficial to understanding hydrogen bond properties of these pairs.  相似文献   

2.
The electronic responses of duplex B-DNA sequences are investigated using perturbation theory analyses. The electronic polarizability and effective mass are computed for base pair doublets and triplets and the electronic structures are calculated according to density functional theory. High polarizability and a light effective mass are obtained in a sequence such as 5′-GGG-3′. The results indicate that the concentration of GC base pairs causes a high response of the electronic states, and molecular orbitals that are very responsive to the electric field tend to be reactive with other orbitals or conducting hole carriers. Furthermore, the interaction between the electronic states and a positively charged wavepacket is discussed, assuming hole injection in the DNA sequences. The sequence of 5′-GGG-3′ responds sensitively to the external hole approach, which is presumably injected to a guanine site.  相似文献   

3.
Binding of clusters of gold atoms (Au) with the guanine-cytosine (GC) and adenine-thymine (AT) Watson-Crick DNA base pairs was studied using the density functional theory (DFT). Geometries of the neutral GC-Au(n) and AT-Au(n) and the corresponding anionic (GC-Au(n))(-1) and (AT-Au(n))(-1) (n = 4, 8) complexes were fully optimized in different electronic states, that is, singlet and triplet states for the neutral complexes and doublet and quartet states for the anionic complexes, using the B3LYP density functional method. The 6-31+G basis set was used for all atoms except gold. For gold atoms, the Los Alamos effective core potential (ECP) basis set LanL2DZ was employed. Vibrational frequency calculations were performed to ensure that the optimized structures corresponded to potential energy surface minima. The gold clusters around the neutral GC and AT base pairs have a T-shaped structure, which satisfactorily resemble those observed experimentally and in other theoretical studies. However, in anionic GC and AT base pairs, the gold clusters have extended zigzag and T-shaped structures. We found that guanine and adenine have high affinity for Au clusters, with their N3 and N7 sites being preferentially involved in binding with the same. The calculated adiabatic electron affinities (AEAs) of the GC-Au(n)complexes (n = 4, 8) were found to be much larger than those of the isolated base pairs.  相似文献   

4.
The structure and function of RNA molecules are substantially affected by non-Watson-Crick base pairs actively utilizing the 2'-hydroxyl group of ribose. Here we correlate scalar coupling constants across the noncovalent contacts calculated for the cis- and trans-WC/SE (Watson-Crick/sugar edge) RNA base pairs with the geometry of base to base and sugar to base hydrogen bond(s). 23 RNA base pairs from the 32 investigated were found in RNA crystal structures, and the calculated scalar couplings are therefore experimentally relevant with regard to the binding patterns occurring in this class of RNA base pairs. The intermolecular scalar couplings 1hJ(N,H), 2hJ(N,N), 2hJ(C,H), and 3hJ(C,N) were calculated for the N-H...N and N-H...O=C base to base contacts and various noncovalent links between the sugar hydroxyl and RNA base. Also, the intramolecular 1J(N,H) and 2J(C,H) couplings were calculated for the amino or imino group of RNA base and the ribose 2'-hydroxyl group involved in the noncovalent interactions. The calculated scalar couplings have implications for validation of local geometry, show specificity for the amino and imino groups of RNA base involved in the linkage, and can be used for discrimination between the cis- and trans-WC/SE base pairs. The RNA base pairs within an isosteric subclass of the WC/SE binding patterns can be further sorted according to the scalar couplings calculated across different local noncovalent contacts. The effect of explicit water inserted in the RNA base pairs on the magnitude of the scalar couplings was calculated, and the data for discrimination between the water-inserted and direct RNA base pairs are presented. The calculated NMR data are significant for structural interpretation of the scalar couplings in the noncanonical RNA base pairs.  相似文献   

5.
Hydrogen-bonded nucleic acids base pairs substantially contribute to the structure and stability of nucleic acids. The study presents reference ab initio structures and interaction energies of selected base pairs with binding energies ranging from -5 to -47 kcal/mol. The molecular structures are obtained using the RI-MP2 (resolution of identity MP2) method with extended cc-pVTZ basis set of atomic orbitals. The RI-MP2 method provides results essentially identical with the standard MP2 method. The interaction energies are calculated using the Complete Basis Set (CBS) extrapolation at the RI-MP2 level. For some base pairs, Coupled-Cluster corrections with inclusion of noniterative triple contributions (CCSD(T)) are given. The calculations are compared with selected medium quality methods. The PW91 DFT functional with the 6-31G basis set matches well the RI-MP2/CBS absolute interaction energies and reproduces the relative values of base pairing energies with a maximum relative error of 2.6 kcal/mol when applied with Becke3LYP-optimized geometries. The Becke3LYP DFT functional underestimates the interaction energies by few kcal/mol with relative error of 2.2 kcal/mol. Very good performance of nonpolarizable Cornell et al. force field is confirmed and this indirectly supports the view that H-bonded base pairs are primarily stabilized by electrostatic interactions.  相似文献   

6.
The importance of non-Watson-Crick base pairs in the three-dimensional structure of RNA is now well established. The structure and stability of these noncanonical base pairs are, however, poorly understood. We have attempted to understand structural features of 33 frequently occurring base pairs using density functional theory. These are of three types, namely (i) those stabilized by two or more polar hydrogen bonds between the bases, (ii) those having one polar and another C-H...O/N type interactions, and (iii) those having one H-bond between the bases and another involving one of the sugars linked to the bases. We found that the base pairs having two polar H-bonds are very stable as compared to those having one C-H...O/N interaction. Our quantitatively analysis of structures of these optimized base pairs indicates that they possess a different amount of nonplanarity with large propeller or buckle values as also observed in the crystal structures. We further found that geometry optimization does not modify the hydrogen-bonding pattern, as values of shear and open angle of the base pairs remain conserved. The structures of initial crystal geometry and final optimized geometry of some base pairs having only one polar H-bond and a C-H...O/N interaction, however, are significantly different, indicating the weak nature of the nonpolar interaction. The base pair flexibility, as measured from normal-mode analysis, in terms of the intrinsic standard deviations of the base pair structural parameters are in conformity with those calculated from RNA crystal structures. We also noticed that deformation of a base pair along the stretch direction is impossible for all of the base pairs, and movements of the base pairs along shear and open are also quite restricted. The base pair opening mode through alteration of propeller or buckle is considerably less restricted for most of the base pairs.  相似文献   

7.
Adiabatic electron affinities (AEA) and structural perturbations due to addition of an excess electron to each of the neutral guanine-cytosine (G-C), adenine-thymine (A-T), and hypoxanthine-cytosine (HX-C) base pairs were studied using the self-consistent charge, density functional tight-binding (SCC-DFTB-D) method, augmented by the empirical London dispersion energy term. Performance of the SCC-DFTB-D method was examined by comparing the calculated results using it with those obtained from experiment as well as ab initio and other different density functional theoretical studies. An excellent agreement between the SCC-DFTB-D results and those obtained by the other calculations regarding the structural modifications, hydrogen bonding, and dissociation energies of the neutral and radical anion base pairs was found. It is shown that adiabatic electron affinity can be better predicted by considering reaction enthalpies of formation of the respective neutral and anionic base pairs from their respective molecular components instead of taking the difference between their total energies. The calculated AEAs of the base pairs were compared with those obtained by the bracketing method from Schaefer and coworkers, where a satisfactory agreement was found. It shows applicability of the SCC-DFTB-D method to study charged DNA models at a highly economical computational cost.  相似文献   

8.
Femtosecond pump-probe spectroscopy was combined with photoelectron-photoion coincidence detection to investigate the electronic structure and dynamics of isolated adenine (A) and thymine (T) dimers and the adenine-thymine (AT) base pair. The photoelectron spectra show that pipi* and npi* states are only weakly perturbed in the hydrogen-bound dimers as compared to the monomers. For cationic base pairs with internal energies greater than 1 eV, we observed considerable cluster fragmentation into protonated monomers. This process selectively removed signals from the npi* --> n-1 ionization channel in all dimers. The photoelectron spectra are compared to time-resolved mass spectra and confirm the assignment of short-lived pipi* and npi* populations in the adenine, thymine, and mixed AT dimers.  相似文献   

9.
Metal‐modified DNA base pairs, which possess potential electrical conductivity and can serve as conductive nanomaterials, have recently attracted much attention. Inspired by our recent finding that multicopper incorporation into natural DNA base pairs could improve the electronic properties of base pairs, herein, we designed two novel multi‐copper‐mediated mismatched base pairs (G3CuT and A2CuC), and examined their structural and electronic properties by means of density functional theory calculations. The results reveal that these multi‐Cu‐mediated mismatched base pairs still have planar geometries that are thermodynamically favorable to stability, and their binding energies are close to those of multi‐Cu‐mediated normal base pairs (G3CuC and A2CuT). Their HOMO–LUMO gaps and ionization potentials decrease significantly compared to the corresponding natural base pairs. As evidenced by the charge transfer excitation transitions, transverse electronic communication of G3CuT and A2CuC is remarkably enhanced, suggesting that they facilitate electron migration along the DNA wires upon incorporation. Further examinations also clarify the possibility to build promising DNA helices using the G3CuT and/or A2CuC base pairs. The calculated electronic properties of the three‐layer‐stacked multi‐Cu‐mediated mismatched base pairs illustrate that the Cum‐DNA have better conductivity. This work provides perspectives for the development and application of DNA nanowires.  相似文献   

10.
The structures of the ground and excimer states of perylene pairs are calculated [using density functional theory (DFT) and time-dependent DFT techniques] in a free as well as a crystal environment, and their spectroscopic properties are studied for the most stable configurations. The vertical transition energies for the absorption and emission bands are obtained, and they are in good agreement with experimental data. In these calculations, up to six excited states are considered. With the calculated structures of the ground and excimer states, the scattering factors are analyzed as a function of the concentration of excimers in a crystal. The intensity of the 110, 005, and 0 10 0 reflections are found to be fairly sensitive to the presence of excimers in the crystal. The finite (nanosecond) lifetime of the excimer may make it possible to observe this state using time-resolved X-ray diffraction techniques.  相似文献   

11.
12.
DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H)-oxazolone (Oz), guanidinohydantoin (Gh)/iminoallantoin (Ia) and spiro-imino-dihydantoin (Sp) are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.  相似文献   

13.
The relative stabilities of guanine–cytosine (G–C) DNA base pairs are theoretically investigated with a focus on the keto–enol tautomerism as well as on the cis–trans enol isomerism by using both ab initio method and the density functional theory. The G–C pairs of the keto tautomers turn out to be in general more stable than those of the enol tautomers, 9H-guanine pair, 9KK (see the notation below), being the most stable one. The stability of the G–C pairs appears to be affected by various factors including the keto–enol tautomerization, cis–trans enol isomerization, and the steric hindrance between two tautomeric pairs. Although the B3LYP calculations tend to underestimate the binding energies, in addition, it is shown that the binding energy of G–C pairs interacting through hydrogen bonds can be reasonably calculated with the DFT method, contrary to the base pairs with stacked configurations.  相似文献   

14.
Non-canonical base pairs contribute immensely to the structural and functional variability of RNA, which calls for a detailed characterization of their spatial conformation. Intra-base pair parameters, namely propeller, buckle, open-angle, stagger, shear and stretch describe structure of base pairs indicating planarity and proximity of association between the two bases. In order to study the conformational specificities of non-canonical base pairs occurring in RNA crystal structures, we have upgraded NUPARM software to calculate these intra-base pair parameters using a new base pairing edge specific axis system. Analysis of base pairs and base triples with the new edge specific axis system indicate the presence of specific structural signatures for different classes of non-canonical pairs and triples. Differentiating features could be identified for pairs in cis or trans orientation, as well as those involving sugar edges or C-H-mediated hydrogen bonds. It was seen that propeller for all types of base pairs in cis orientation are generally negative, while those for trans base pairs do not have any preference. Formation of a base triple is seen to reduce propeller of the associated base pair along with reduction of overall flexibility of the pairs. We noticed that base pairs involving sugar edge are generally more non-planar, with large propeller or buckle values, presumably to avoid steric clash between the bulky sugar moieties. These specific conformational signatures often provide an insight into their role in the structural and functional context of RNA.  相似文献   

15.
The solution structure of a synthetic DNA mini-hairpin possessing a stilbenediether linker and three G:C base pairs has been obtained using (1)H NMR spectral data and constrained torsion angle molecular dynamics. Notable features of this structure include a compact hairpin loop having a short stilbene-guanine plane-to-plane distance and approximate B-DNA geometry for the three base pairs. Comparison of the electronic spectra of mini-hairpins having one-to-four G:C base pairs and stilbenediether or hexamethyleneglycol linkers reveals the presence of features in the UV and CD spectra of the stilbene-linked hairpins that are not observed for the ethyleneglycol-linked hairpins. Investigation of the electronic structure of a stilbene-linked hairpin having a single G:C base pair by means of time-dependent density functional theory shows that the highest occupied molecular orbital, but not the lowest unoccupied molecular orbital, is delocalized over the stilbene and adjacent guanine. The calculated UV and CD spectra are highly dependent upon hairpin conformation, but reproduce the major features of the experimental spectra. These results illustrate the utility of an integrated experimental and theoretical approach to understanding the complex electronic spectra of pi-stacked chromophores.  相似文献   

16.
The energy levels and wavefunctions of the protons of the hydrogen bonds in DNA base pairs are numerically calculated for a series of adiabatic potential curves. The phenomenon of the so-called proton tunnelling is discussed. The radiative proton transition probabilities are calculated and a comparison with the radiationless ones is made. The relative proton transition probabilities accompanying the electron excitation and de-excitation of the DNA base pairs are evaluated.  相似文献   

17.
We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)(n) sequences are localized on individual guanines.  相似文献   

18.
Modified cytosine and guanine nucleobases cocrystallize in a hydrogen bonding configuration similar to that observed in native DNA. The noncovalent interactions binding these base pairs in the crystalline solid were investigated using terahertz (THz) spectroscopy and solid-state density functional theory (DFT). While stronger hydrogen bonding interactions are responsible for the general molecular orientations in the crystalline state, it is the weaker dipole-dipole and dispersion forces that determine the overall packing arrangement. The inclusion of dispersion interactions in the DFT calculations was found to be necessary to accurately simulate the unit cell structure and THz vibrational spectrum. Using properly modeled intermolecular potentials, the lattice vibrational motions of the cytosine and guanine derivatives were calculated. The vibrational characters of the modes exhibited by the DNA base pair mimic in the THz region were primarily rotational motions and are indicative of the energies and the nature of vibrations that would likely be observed between similar base pairs in DNA molecules.  相似文献   

19.
The density functional calculations with aug-cc-pVDZ basis sets on cationic guanine-cytosine (GC(+)) and adenine-thymine (AT(+)) base pairs suggest that the cationic charge is almost entirely localized on the G and A units with significant changes in the N-H and N...O distances around the H-bonded area. While the calculated intramolecular reorganization energy (lambda(v)) for a GC base pair (0.75 eV) is remarkably larger than that for an isolated G base (0.49 eV), for the AT base pairs these values (0.44 and 0.40 eV) are almost the same. The gas phase activation energies (E(a)) for GC(+)GC-->GCGC(+), AT(+)AT-->ATAT(+), and GC(+)AT-->GCAT(+) hole transfer processes are 0.19, 0.11, and 0.73 eV with rate constants of 1.69 x 10(11), 3.15 x 10(11), and 4.61(0.168) s(-1), respectively, at 298 K. An alternative mechanism of hole transfer has been proposed on the basis of energy barriers.  相似文献   

20.
Electronic coupling V(da) is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of V(da) for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a pi stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of V(da) are obtained with the standard 6-31G(*) and extended 6-31+ +G(**) basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of V(da) are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements V(da) for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号