首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
Research into macromolecular self-assembly has been progressively developing since the 1970s but with a little affect from the achievements of supramolecular chemistry. In recent years, this situation has changed as more and more factors and concepts in supramolecular chemistry have been introduced into studies of the self-assembly of polymers. In this respect, inclusion complexation based on cyclodextrins plays a remarkable role. In this tutorial review, we address how inclusion complexation has been employed and used to promote the recent developments in macromolecular self-assembly. These include the amphiphilicity adjustment of macromolecules, non-covalent linkages for forming pseudo block copolymers and micelles, surface modification and functionalization of polymeric micelles and vesicles, and the combination of synthetic polymeric assemblies with biological moieties. Furthermore, the realization of the reversible stimuli-responsiveness of polymeric assemblies and materials, particularly hydrogels by means of controllable inclusion complexation is discussed as well.  相似文献   

2.
The incorporation of gold nanoparticles (Au NPs) as quencher modules in fluorescent probes for DNA damage caused by intracellular hydroxyl radicals (HO*) is reported. Au NPs of 15 nm diameter were decorated with DNA oligomers terminating in thiol functions in their 3' positions and possessing 5' fluorophore modifications. The Au NPs, which have high extinction coefficients, functioned as excellent fluorescent quenchers in the fluorophore-Au NP composites. FRET is switched off as a factor of HO*-induced strand breakage in the single-stranded DNAs, restoring the fluorescence of the quenched fluorophores, which can be followed by spectrofluorimetry. In vitro assays with HO*-generating Fenton reagent demonstrated increases in fluorescence intensity with a linear range from 8.0 nM to 1.0 microM and a detection limit as low as 2.4 nM. Confocal microscopic imaging of macrophages and HepG2 revealed that the probe is cell-permeable and intracellular HO*-responsive. The unique combination of good selectivity and high sensitivity establishes the potential value of the probe for facilitating investigations of HO*-mediated cellular homeostasis and injury.  相似文献   

3.
《Mendeleev Communications》2023,33(3):340-342
Internalization of poloxamer 188-coated PLGA nanoparticles (NPs) in GL261 murine glioma cells was studied using confocal laser scanning microscopy. For visualization, both poloxamer 188 (P188) and PLGA were labeled covalently with fluorescent dyes Rhodamine B and Cyanine5, respectively. The results indicated that the PLGA NPs coated with poloxamer 188 enter a cell as an integral core–shell structure, which can be helpful for gaining further insight into the in vivo performance of surfactant-coated polymeric NPs as core–shell delivery systems  相似文献   

4.
In recent years, considerable efforts have been devoted to better understand the unique emission properties of fluorophores enhanced by the localized surface plasmon resonance of metal nanoparticles (NPs), due to the widespread applications of fluorescence techniques. It is demonstrated by experiment and theoretical calculation that the enhancement efficiency strongly depends on the morphology of the metal NPs, the spectral overlap between metal and fluorophores, the separation distance between them, and other factors. Among these aspects to be considered are suitable spacer material and assembling methods to control the spatial arrangement of plasmonic NPs and fluorophore with proper optical properties and interactions. In this contribution, we provide a brief overview on recent progress of metal-enhanced fluorescence in organized films and colloidal systems.  相似文献   

5.
Fluorescent nanoparticles (NPs), including semiconductor NPs (Quantum Dots), metal NPs, silica NPs, polymer NPs, etc., have been a major focus of research and development during the past decade. The fluorescent nanoparticles show unique chemical and optical properties, such as brighter fluorescence, higher photostability and higher biocompatibility, compared to classical fluorescent organic dyes. Moreover, the nanoparticles can also act as multivalent scaffolds for the realization of supramolecular assemblies, since their high surface to volume ratio allow distinct spatial domains to be functionalized, which can provide a versatile synthetic platform for the implementation of different sensing schemes. Their excellent properties make them one of the most useful tools that chemistry has supplied to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In this review, we focus on the developments and analytical applications of fluorescent nanoparticles in chemical and biological sensing within the intracellular environment. The review also points out the great potential of fluorescent NPs for fluorescence lifetime imaging microscopy (FLIM). Finally, we also give an overview of the current methods for delivering of fluorescent NPs into cells, where critically examine the benefits and liabilities of each strategy.  相似文献   

6.
The adaptive properties of noncovalent materials allow easy processing, facile recycling, self-healing, and stimuli responsiveness. However, the poor robustness of noncovalent systems has hampered their use in real-life applications. In this Concept Article we discuss the possibility of creating robust noncovalent arrays by utilizing strong hydrophobic interactions. We describe examples from our work on aqueous assemblies based on aromatic amphiphiles with extended hydrophobic cores. These arrays exhibit fascinating properties, including robustness, multiple stimuli-responsiveness, and pathway-dependent self-assembly. We have shown that this can lead to functional materials (filtration membranes) rivaling covalent systems. We anticipate that water-based noncovalent materials have the potential to replace or complement conventional polymer materials in various fields, and to promote novel applications that require the combination of robustness and adaptivity.  相似文献   

7.
Ion sensors based on colloidal nanoparticles (NPs), either as actively ion‐sensing NPs or as nanoscale carrier systems for organic ion‐sensing fluorescent chelators typically require a charged surface in order to be colloidally stable. We demonstrate that this surface charge significantly impacts the ion binding and affects the read‐out. Sensor read‐out should be thus not determined by the bulk ion concentration, but by the local ion concentration in the nano‐environment of the NP surface. We present a conclusive model corroborated by experimental data that reproduces the strong distance‐dependence of the effect. The experimental data are based on the capability of tuning the distance of a pH‐sensitive fluorophore to the surface of NPs in the nanometer (nm) range. This in turn allows for modification of the effective acid dissociation constant value (its logarithmic form, pKa) of analyte‐sensitive fluorophores by tuning their distance to the underlying colloidal NPs.  相似文献   

8.
We report herein on a model built to analyze and optimize nanoparticle (NP) dimer formation. The rationale for this work stems from our interest in building effective NP dimer-based tagging systems for surface enhanced Raman scattering (SERS)-based detection. This model takes into account the behavior of the NPs in solution and the molecules on their surface, to provide a coherent and physically constrained system. The kinetics of formation of dimers and larger assemblies are investigated on suspensions of varying concentrations through a coarse-grained ad hoc computer simulation based on a Molecular Dynamics-like approach. Several different effects are considered, including the behavior and interaction of surface molecules, the interactions between the latter and the NPs, and between NPs. The surface molecules are treated as rigid structures that can occupy specific binding sites. A Brownian model is used to both integrate the particle trajectory and provide random thermal forces. These systems show a NP concentration-dependent behavior with respect to the formation of dimers versus larger assemblies over the timescale of the simulation. The simulations also indicate that these systems form low-density aggregates as opposed to the close packed formations reported previously. A dependence on the properties and the concentration of the linkers is also demonstrated.  相似文献   

9.
荧光传感方法检测爆炸物的研究进展   总被引:1,自引:1,他引:0  
爆炸物检测是当前国际安全中迫切关注的问题之一。在过去的几十年中,大量的荧光传感材料用于荧光传感检测气态、液态和固态爆炸物见诸于报道。近年来,为了实现爆炸物的快速响应、高灵敏和高选择性的检测,研究工作者大力开发了各种新型荧光材料。这篇综述总结了近年来用于爆炸物检测的先进荧光材料,详尽、系统、重点地介绍了共轭聚合物、荧光小分子、超分子体系、具有聚集诱导发光效应的活性材料及静电纺丝纳米材料等各种荧光材料在爆炸物检测中的应用,展望了荧光传感方法在爆炸物检测领域的应用前景。  相似文献   

10.
An unusual aggregation phenomenon that involves positively charged poly(L-lysine) (PLL) and negatively charged gold nanoparticles (Au NPs) is reported. Discrete, submicrometer-sized spherical aggregates are found to form immediately upon combining a PLL solution with gold sol (diameter approximately 14 nm). These PLL-Au NP assemblies grow in size with time, according to light scattering experiments, which indicates a dynamic flocculation process. Water-filled, silica hollow microspheres (outer diameter approximately microns) are obtained upon the addition of negatively charged SiO2 NPs (diameter approximately 13 nm) to a suspension of the PLL-Au NP assemblies, around which the SiO2 NPs form a shell. Structural analysis through confocal microscopy indicates the PLL (tagged with a fluorescent dye) is located in the interior of the hollow sphere, and mostly within the silica shell wall. The hollow spheres are theorized to form through flocculation, in which the charge-driven aggregation of Au NPs by PLL provides the critical first step in the two-step synthesis process ("flocculation assembly"). The SiO2 shell can be removed and re-formed by decreasing and increasing the suspension pH about the point-of-zero charge of SiO2, respectively.  相似文献   

11.
Fluorescence detection and imaging are vital technologies in the life sciences and clinical diagnostics. The key to obtaining high-resolution images and sensitive detection is to use fluorescent molecules or particles that absorb and emit visible light with high efficiency. We have synthesized supramolecular complexes consisting of a branched DNA template and fluorogenic intercalating dyes. Because dyes can intercalate up to every other base pair, high densities of fluorophores are assembled yet the DNA template keeps them far enough away from each other to prevent self-quenching. The efficiency with which these noncovalent assemblies absorb light is more than 10-fold greater than that of the individual dye molecules. F?rster resonance energy transfer from the intercalated dyes to covalently attached acceptor dyes is very efficient, allowing for wavelength shifting of the emission spectrum. Simple biotinylation of the DNA template allows for labeling of streptavidin-coated synthetic microspheres and mouse T-cells.  相似文献   

12.
We describe a pyrophosphate (PPi) probe that is based on a fluorescent dicarboxylate‐substituted poly(para‐phenyleneethynylene) (PPE) and 10 nm cobalt–iron spinel nanoparticles (NPs) in aqueous media. The spinel NPs efficiently quench the fluorescence of the PPE at a concentration of 20–30 pmol. Addition of phosphate anions to the PPE–NP construct displaces the quenched PPE to give rise to a fluorescent response; we found that PPi and phosphate (Pi) have significantly different binding affinities for the self‐assembled materials. We can discern >40 nM PPi in the presence of 0.1 mM Pi at pH 7, which suggests that these assemblies may be useful in bio‐analytical applications. This displacement assay was used to effectively determine the ability of pyrophosphatase to hydrolyze PPi to Pi.  相似文献   

13.
This review summarizes several aspects of type II photoactive organic-inorganic hybrid materials prepared from silylated fluorophores, including their photophysical properties and uses. In this sense, several examples are presented and discussed taking the nature of the silyl derivative into account. Applications as latent fingerprints detection, chemosensors for metal cations, anions, pH, heavy metals, and small organic molecules, as well as recent use as drug delivery systems, bioimaging, organic solar cells, aerogels, and highly fluorescent hybrid materials, are reported and compared to the literature. Also, fluorescent type II organic-inorganic hybrid materials from non-silylated fluorophores, prepared with binding agents, such as 3-(triethoxysilyl)propyl isocyanate (TESPIC), 3-mercaptopropyltriethoxysilane (TMMPS), or 3-isocyanato propyltrimethoxysilane (ICPTES) are also covered in this review.  相似文献   

14.
Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.  相似文献   

15.
The supramolecular crosslinking of polymer chains in water by specific, directional and dynamic non-covalent interactions has led to the development of novel supramolecular polymeric hydrogels. These aqueous polymeric networks constitute an interesting class of soft materials exhibiting attractive properties such as stimuli-responsiveness and self-healing arising from their dynamic behaviour and that are crucial for a wide variety of emerging applications. We present here a critical review summarising the formation of dynamic polymeric networks through specific non-covalent interactions, with a particular emphasis on those systems based on host-guest complex formation, as well as the characterisation of their physical characteristics. Aqueous supramolecular chemistry has unlocked a versatile toolbox for the design and fine-tuning of the material properties of these hydrogels (264 references).  相似文献   

16.
Yang HH  Qu HY  Lin P  Li SH  Ding MT  Xu JG 《The Analyst》2003,128(5):462-466
Nanometer-sized fluorescent hybrid silica (NFHS) particles were prepared for use as sensitive and photostable fluorescent probes in biological staining and diagnostics. The first step of the synthesis involves the covalent modification of 3-aminopropyltrimethoxysilane with an organic fluorophore, such as fluorescein isothiocyanate, under N2 atmosphere for getting a fluorescent silica precursor. Then the NFHS particles, with a diameter of well below 40 nm, were prepared by controlled hydrolysis of the fluorescent silica precursor with tetramethoxysilane (TMOS) using the reverse micelle technique. The fluorophores are dispersed homogeneously in the silica network of the NFHS particles and well protected from the environmental oxygen. Furthermore, since the fluorophores are covalently bound to the silica network, there is no migration, aggregation and leakage of the fluorophores. In comparison with common single organic fluorophores, these particle probes are brighter, more stable against photobleaching and do not suffer from intermittent on/off light emission (blinking). We have used these newly developed NFHS particles as a fluorescent marker to label antibodies, using silica immobilization method, for the immunoassay of human alpha-fetoprotein (AFP). The detection limit of this method was down to 0.05 ng mL(-1) under our current experimental conditions. We think this material would attract much attention and be applied widely in biotechnology.  相似文献   

17.
Fluorophores with emission in the second near-infrared window (NIR-II) have displayed salient advantages for biomedical applications. However, the common strategy of reducing the energy bandgap of fluorophores so as to achieve red-shifted wavelengths always leads to compromised fluorescent brightness. Herein, we propose a molecular design concept of “ring-fusion” to modify the acceptor of AIEgen that can extend the luminous wavelength from NIR-I to NIR-II. The fused-acceptor-containing fluorophore yielded, TTQP, has an enhanced absorption coefficient with a higher brightness in nanoparticle formation compared to its NIR-I emissive counterpart (TTQ-DP) with a non-fused acceptor. Theoretical calculation further confirms that the ring fusion can efficiently promote the rigidity and planarity of the electron-deficient core, leading to a lower reorganization energy and nonradiative decay. The TTQP NPs yielded thus allow sensitive NIR-II fluorescence imaging of vasculature and intestinal inflammation in mice models. Therefore, we anticipate that our work will provide a promising molecular-engineering strategy to enrich the library and broaden the application scope of NIR-II fluorophores.  相似文献   

18.
《中国化学快报》2023,34(4):107720
The clinical efficacy of chemotherapeutic drugs is hindered by their poor aqueous solubility, low bioavailability and severe side effects. In recent years, polymeric nanocarriers have been used for drug delivery to improve the efficacy of many chemotherapeutics. In this study, a series of biodegradable phenylalanine-based poly(ester amide) (Phe-PEA) with tunable molecular weights (MWs) were synthesized to systematically investigate the relationship between the polymer MW and the efficacy of the corresponding polymeric nanoparticles (NPs). The results indicated that a range of polymers with different MWs can be obtained by varying the monomer ratio or reaction time. Doxorubicin (DOX), a classic clinical lymphoma treatment strategy, was selected as a model drug. The loading capacity and stability of the higher MW polymeric NPs were superior to those of the lower MW ones. Moreover, in vitro and in vivo data revealed that high MW polymeric NPs had better anticancer efficacy against lymphoma and higher biosafety than low MW polymeric nanoparticles and DOX. Therefore, this study suggests the importance of polymer MW for drug delivery systems and provides valuable guidance for the design of enhanced polymeric drug carriers for lymphoma treatment.  相似文献   

19.
Zhang Y  Wang Z  Jiang W 《The Analyst》2011,136(4):702-707
In this study, we reported a sensitive fluorescent biosensor for detection of DNA hybridization based on Fe/Au core/shell (Fe@Au) nanoparticles (NPs). First, Fe@Au NPs were synthesized using a reverse micelle method, with gold as the shell and iron as the core. The nanoparticle size was confirmed by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was performed in order to elucidate the morphology of the Fe@Au NPs. Then probe DNA with -SH at the 5'-phosphate end was covalently immobilized onto the surface of the Fe@Au NPs. The DNA hybridization event can be detected by a fluorescent method and methylene blue (MB) as the fluorescent probe. The decline of the fluorescence intensity of MB (ΔF) was linear with the concentration of the complementary DNA from 3.0 × 10(-13) to 1.0 × 10(-9) M with a detection limit of 1.0 × 10(-13) M (S/N = 3). In addition, this approach of DNA detection exhibited excellent selectivity, even for single-mismatched DNA detection.  相似文献   

20.
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号