首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The kinetics of propylene polymerization initiated by racemic ethylene-1,2-bis(1-indenyl) zirconium bis(dimethylamide) [rac-(EBI) Zr(NMe2)2(rac-1)] cocatalyzed by methylaluminoxane (MAO) were studied. The polymerization behaviors of rac-1/MAO catalyst investigated by changing various experimental parameters are quite different from those of rac-(EBI) ZrCl2 (rac-2)/MAO catalyst, due to the differences in the generation procedure of cationic actives species of each metallocene by the reaction with MAO. The activity of rac-1/MAO catalyst showed maximum when [Al]/[Zr] is around 2000, when [Zr] is 137.1 μM, and when polymerization temperature is 30°C. The negligible activity of rac-1/MAO catalyst at a very low MAO concentration seems to be caused by the instability of the cationic active species. The meso pentad values of polymers produced by rac-1/MAO catalyst at 30°C are in the range of 82.8% to 89.7%. The rac-1/MAO catalyst lost stereorigid character at the polymerization temperature above 60°C. The molecular weight of polymer decreased as [Al]/[Zr] ratio, polymerization temperature, and [Zr] increased. The molecular weight distributions of all polymers are in the range of 1.8–2.3, demonstrating uniform active species present in the polymerization system.  相似文献   

2.
Propene, 1-butene and 1-hexene polymerization was conducted with a mixture of rac- and meso-[dimethylsilylenebis((2,3,5-tetramethyl-cyclopentadienyl))]zirconium dichloride (Me2Si(2,3,5-Me3Cp)2ZrCl2) ( 1 ) combined with methylaluminoxane (MAO), triethylaluminium (AlEt3)/triphenylcarbenium tetrakis(pentafluorophenyl)borate (Ph3CB(C6F5)4) ( 2 ) and triisobutylaluminium (AliBu3)/Ph3CB(C6F5)4, respectively, as co-catalyst systems. The ratios of polymerization rates Rp(rac)/Rp(meso) were changed with the combined cocatalysts. It was found that in the case of using trialkylaluminium/ 2 as co-catalyst Rp(rac)/Rp(meso) is lower than when using MAO in any kind of α-olefin polymerization.  相似文献   

3.
Copolymerizations of propylene (P) with 1,5‐hexadiene (1,5‐HD) were carried out with isospecific rac‐1,2‐ethylenebis(1‐indenyl)Zr(NMe2)2 [rac‐(EBI)Zr(NMe2)2, 1] and syndiospecific isopropylidene(cyclopentadienyl)(9‐fluorenyl)ZrMe2 [i‐Pr(Cp)(Flu)ZrMe2, 2] compounds combined with Al(i‐Bu)3/[Ph3C][B(C6F5)4] as a cocatalyst system. Microstructures of poly(propylene‐co‐1,5‐HD) were determined by 1H NMR, 13C NMR, Raman spectroscopies and X‐ray powder diffraction. The isospecific 1/Al(i‐Bu)3/[Ph3C][B(C6F6)4] catalyst showed much higher polymerization rate than 2/Al(i‐Bu)3/[Ph3C][B(C6F6)4] system, however, the latter system showed higher incorporation of 1,5‐HD (rP = 8.85, r1,5‐HD = 0.274) than the former system (rP = 16.25, r1,5‐HD = 0.34). The high value of rP × r1,5‐HD far above 1 demonstrated that the copolymers obtained by both catalysts are somewhat blocky. The insertion of 1,5‐HD proceeded by enantiomorphic site control; however, the diastereoselectivity of the intramolecular cyclization reaction of 1,2‐inserted 1,5‐HD was independent of the stereospecificity of metallocene compounds, but dependent on the concentration of 1,5‐HD in the feed. The insertion of the monomers by enantiomorphic site control could also be realized by Raman spectroscopy and X‐ray powder diffraction of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1590–1598, 2000  相似文献   

4.
Cyclopolymerization of 1,5‐hexadiene has been carried out at various temperatures in toluene by using three different stereospecific metallocene catalysts—isospecific rac‐(EBI)Zr(NMe2)2 [EBI: ethylenebis(1‐indenyl), Cat 1], syndiospecific Me2C(Cp)(Flu)ZrMe2 (Cp = 1‐cyclopentadienyl, Flu = 1‐fluorenyl, Cat 2), and aspecific CpZrMe2 (Cp*: pentamethylcyclopentadienyl, Cat 3) compounds in the presence of Al(i‐Bu)3 and [Ph3C][B(C6F5)4]—in order to study the effect of polymerization temperature and catalyst stereospecificity on the property and microstructure of poly(methylene‐1,3‐cyclopentane) (PMCP). The activities of catalysts decrease in the following order: Cat 1 > Cat 2 > Cat 3. PMCPs produced by Cat 1 are not completely soluble in toluene, but those by Cat 2 and Cat 3 are soluble in toluene. trans‐Diisotactic rich PMCPs are produced by Cat 1 and Cat 2, and cis‐atactic PMCP by Cat 3. The cis/trans ratio of PMCP by Cat 1 and Cat 2 is relatively insensitive to the polymerization temperature, but that by Cat 3 is highly sensitive to the polymerization temperature. Melting temperatures of PMCP produced increase with the cis to trans ratio of rings. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1520–1527, 2000  相似文献   

5.
The rac-ethylenebis(indenyl)methylzirconium ‘cation’ (1), generated from rac-Et(Ind)2ZrMe2 and Ph3CB(C6F5)4, has recently been shown to be exceedingly active and stereoselective in propylene polymerization. The ethyl analog (2) can be produced by an alternate, efficient route involving a reaction between rac-Et(Ind)2ZrCl2 and AlEt3 (TEA), followed by addition of Ph3CB(C6F5)4. The use of excess AlEt3 serves both to alkylate the zirconium complex as well as to scavenge the system. The propylene polymerization activity of the ‘cation’ 2 is about 7000 times greater than the activity of rac-Et(Ind)2ZrCl2/methylaluminoxane (MAO) at Tp=?20°C. The related catalyst system rac-Me2Si(Ind)2ZrCl2/TEA/Ph3CB(C6F5)4 (3) was found to produce 98.3% i-PP with Tm 156.3°C and an activity of 1.8 × 109 g PP {(mol Zr) [C3H6]h}?1.  相似文献   

6.
ABSTRACT

Sequential NMR-scale reactions have been carried out in order to generate cationic methylzirconium complexes by the reaction of rac-(EBI)Zr(NMe2)2 (rac- 1 , EBI = Et(indenyl)2) with methylaluminoxane (MAO) or various anionic compounds. By reacting 40 equiv. of MAO with rac- 1 in an NMR tube containing CD 2CI2 as a solvent at room temperature, rac- 1 is completely activated to give stable cationic methylzirconium complexes, [(EBI)ZrMe]+[MAO]? which polymerize propylene to isotactic polypropylene (iPP). The formation of the cationic species is achieved after rac- 1 is methylated to form rac-(EBI)ZrMe2 (rac- 2 ) by MAO and/or free Al2Me6 contained in MAO. The same sequential reaction has been performed by using rac(EBI)ZrCl2 (rac- 3 ) for the comparison. MAO cannot generate the cationic species at the same reaction conditions in the reaction of rac- 3 and MAO, mainly due to the difficulties of methylation of rac- 3. Ansa ziconocene amide rac- 1 is stoichiometrically methylated by 2 equiv. of Al2Me6 to give rac- 2. Introduction of 1 equiv. of noncoordinating to the solution mixture of rac- 1 and 2 equiv. of Al2Me6 leads to the formation of stable cationic methylzirconium species, [rac-(EBI)Zr(μ-Me)2AlMe2]+. NMR-scale polymerizations have been carried out by adding a small amount of liquid propylene to these cationic species. The meso pentad values of iPP isolated in these polymerizations are in the range of 80.2–84.7%. By changing the order of sequential reaction, i.e., by reacting rac- 1 with noncoordinating anions prior to methylation by Al2Me6, the yield to give cationic methylzirconium species is decreased. Coordinative anions such as [HNMe2Ph][BPh4] and [HNBu3][BP4] are less effective for the generation of the active zirconium cations than noncoordinating anions. The amount of MAO needed to activate rac- 1 can be decreased by the pre-methylation of rac- 1 by Al2Me6.  相似文献   

7.
A constrained geometry catalyst (CGC) precursor, Me2Si(Flu)(N-t-Bu)ZrX2 (X = Cl or NMe2), behaved as a single site catalyst with methylaluminoxane (MAO) as cocatalyst, while it developed much diversified catalytic species with AIR3/Ph3CB(C6F5)4 as cocatalyst. The catalytic performance was not affected if X is Cl or NMe2.  相似文献   

8.
The kinetics of propylene polymerization initiated by ansa‐metallocene diamide compound rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu)/methylaluminoxane (MAO) catalyst were investigated. The formation of cationic active species has been studied by the sequential NMR‐scale reactions of rac‐1 with MAO. The rac‐1 is first transformed to rac‐Me2Si(CMB)2ZrMe2 (rac‐2) through the alkylation mainly by free AlMe3 contained in MAO. The methylzirconium cations are then formed by the reaction of rac‐2 and MAO. Small amount of MAO ([Al]/[Zr] = 40) is enough to completely activate rac‐1 to afford methylzirconium cations that can polymerize propylene. In the lab‐scale polymerizations carried out at 30°C in toluene, the rate of polymerization (Rp) shows maximum at [Al]/[Zr] = 6,250. The Rp increases as the polymerization temperature (Tp) increases in the range of Tp between 10 and 70°C and as the catalyst concentration increases in the range between 21.9 and 109.6 μM. The activation energies evaluated by simple kinetic scheme are 4.7 kcal/mol during the acceleration period of polymerization and 12.2 kcal/mol for an overall reaction. The introduction of additional free AlMe3 before activating rac‐1 with MAO during polymerization deeply influences the polymerization behavior. The iPPs obtained at various conditions are characterized by high melting point (approximately 155°C), high stereoregularity (almost 100% [mmmm] pentad), low molecular weight (MW), and narrow molecular weight distribution (below 2.0). The fractionation results by various solvents show that iPPs produced at Tp below 30°C are compositionally homogeneous, but those obtained at Tp above 40°C are separated into many fractions. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 737–750, 1999  相似文献   

9.
Ansa‐zirconocene diamide complex rac‐(EBI)Zr(NMe2)2 [rac‐1, EBI = ethylene‐1,2‐bis(1‐indenyl)] reacted with AlR3 (R = Me, Et, iBu) or Al(iBu2)H and then with [CPh3][B(C6F5)4] (2) in toluene in order to perform propylene polymerization by cationic alkylzirconium species, which are in situ generated during polymerization. Through the sequential NMR‐scale reactions of rac‐1 with AlR3 or Al(iBu2)H and then with 2, rac‐1 was demonstrated to be transformed to the active alkyzirconium cations via alkylated intermediates of rac‐1. The cationic species generated by using AlMe3, AlEt3, and Al(iBu2)H as alkylating reagents tend to become heterodinuclear complex; however, those by using bulky Al(iBu)3 become base‐free [rac‐(EBI)Zr(iBu)]+ cations. The activity of propylene polymerization by rac‐1/AlR3/2 catalyst was deeply influenced by various parameters such as the amount and the type of AlR3, metallocene concentration, [Al]/[2] ratio, and polymerization temperature. Generally the catalytic systems using bulky alkylaluminum like Al(iBu)3 and Al(iBu)2H show higher activity but lower stereoregularity than those using less bulky AlMe3 and AlEt3. The alkylating reagent Al(iBu)3 is not a transfer agent as good as AlMe3 or AlEt3. The polymerization activities show maximum around [Al]/[2] ratio of 1.0 and increase monotonously with polymerization temperature. The overall activation energy of both rac‐1/Al(iBu)3/2 and rac‐1/Al(iBu)2H catalysts is 6.0 kcal/mol. As the polymerization temperature increases, the stereoregularity of the resulting polymer decreases markedly, which is demonstrated by the decrease of [mmmm] pentad value and by the increase of the amount of polymer soluble in low boiling solvent. The physical properties of polymers produced in this study were investigated by using 13C‐NMR, differential scanning calorimetry (DSC), viscometry, and gel permeation chromatography (GPC). © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1523–1539, 1999  相似文献   

10.
Inversion of stereoselectivity of a particular metallocene (Me2Si(Flu) (N-t-Bu)ZrCl2) (Me: methyl, Flu: fluorenyl, t-Bu: tert-butyl) from syndiospecific into isospecific was observed by changing the cocatalyst from methylaluminoxane (MAO) to [Ph3C]+ [B(C6F5)4]/AliBu3 (iBu:isobutyl). The change of the solvent-separated ion pair (in case of MAO as cocatalyst) into the contact ion pair (in case of the more polar and less bulky borate anion) was proposed as the plausible explanation of this phenomenon.  相似文献   

11.
Racemic-anti-[ethylidene(1-η5-tetramethylcyclopentadienyl) (1-η5-indenyl)dimethyltitanium ( 6 ) has been synthesized and its molecular structure determined by x-ray diffraction methods. The two Ti?Me(1) and Ti?Me(2) units have bond distances differing by 0.08 Å and their proton NMR resonances are separated by over 1 ppm. Using this compound and methylaluminoxane (MAO) as the activator, at 25°C the 6 /MAO catalyst produced polypropylene having crystalline domain with physical crosslinks. The polymers obtained at lower polymerization temperatures are rheologically liquids. The behaviors of this catalyst system resembles closely the previously reported rac-[anti-ethylidene(1-η5-tetramethylcyclopentadienyl) (1-η5-indenyl)dichlorotitanium ( 4 )/MAO system. The structure of 6 determined here furnishes tangible support for the proposed two-state (isomeric)-switching propagation mechanism. Addition of MAO to 6 causes broadening of the Me(1) resonance in the 1H-NMR spectra, and 6 is decomposed by Ph3C+B(C6F5)-4. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
Ansa‐zirconocene diamide complex rac‐Me2Si(CMB)2Zr(NMe2)2 (rac‐1, CMB = 1‐C5H2‐2‐Me‐4‐tBu) reacts with AlR3 (R = Me, Et, i‐Bu) and then with [CPh3]+[B(C6F5)4] (2) in toluene in order to in situ generate cationic alkylzirconium species. In the sequential NMR‐scale reactions of rac‐1 with various amount of AlMe3 and 2, rac‐1 transforms first to rac‐Me2Si(CMB)2Zr(Me)(NMe2) (rac‐3) and rac‐Me2Si(CMB)2ZrMe2 (rac‐4) by the reaction with AlMe3, and then to [rac‐Me2Si(CMB)2ZrMe]+ (5+) cation by the reaction of the resulting mixtures with 2. The activities of propylene polymerizations by rac‐1/Al(i‐Bu)3/2 system are dependent on the type and concentration of AlR3, resulting in the order of activity: rac‐1/Al(i‐Bu)3/2 > rac‐1/AlEt3/2 > rac‐1/MAO ≫ rac‐1/AlMe3/2 system. The bulkier isobutyl substituents make inactive catalytic species sterically unfavorable and give rise to more separated ion pairs so that the monomers can easily access to the active sites. The dependence of the maximum rate (Rp, max) on polymerization temperature (Tp) obtained by rac‐1/Al(i‐Bu)3/2 system follows Arrhenius relation, and the overall activation energy corresponds to 0.34 kcal/mol. The molecular weight (MW) of the resulting isotactic polypropylene (iPP) is not sensitive to Al(i‐Bu)3 concentration. The analysis of regiochemical errors of iPP shows that the chain transfer to Al(i‐Bu)3 is a minor chain termination. The 1,3‐addition of propylene monomer is the main source of regiochemical sequence and the [mr] sequence is negligible, as a result the meso pentad ([mmmm]) values of iPPs are very high ([mmmm] > 94%). These results can explain the fact that rac‐1/Al(i‐Bu)3/2 system keeps high activity over a wide range of [Al(i‐Bu)3]/[Zr] ratio between 32 and 3,260. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1071–1082, 1999  相似文献   

13.
New Ti and Zr complexes that bear imine–phenoxy chelate ligands, [{2,4‐di‐tBu‐6‐(RCH=N)‐C6H4O}2MCl2] ( 1 : M=Ti, R=Ph; 2 : M=Ti, R=C6F5; 3 : M=Zr, R=Ph; 4 : M=Zr, R=C6F5), were synthesized and investigated as precatalysts for ethylene polymerization. 1H NMR spectroscopy suggests that these complexes exist as mixtures of structural isomers. X‐ray crystallographic analysis of the adduct 1 ?HCl reveals that it exists as a zwitterionic complex in which H and Cl are situated in close proximity to one of the imine nitrogen atoms and the central metal, respectively. The X‐ray molecular structure also indicates that one imine phenoxy group with the syn C?N configuration functions as a bidentate ligand, whereas the other, of the anti C?N form, acts as a monodentate phenoxy ligand. Although Zr complexes 3 and 4 with methylaluminoxane (MAO) or [Ph3C]+[B(C6F5)4]?/AliBu3 displayed moderate activity, the Ti congeners 1 and 2 , in association with an appropriate activator, catalyzed ethylene polymerization with high efficiency. Upon activation with MAO at 25 °C, 2 displayed a very high activity of 19900 (kg PE) (mol Ti)?1 h?1, which is comparable to that for [Cp2TiCl2] and [Cp2ZrCl2], although increasing the polymerization temperature did result in a marked decrease in activity. Complex 2 contains a C6F5 group on the imine nitrogen atom and mediated nonliving‐type polymerization, unlike the corresponding salicylaldimine‐type complex. Conversely, with [Ph3C]+[B(C6F5)4]?/AliBu3 activation, 1 exhibited enhanced activity as the temperature was increased (25–75 °C) and maintained very high activity for 60 min at 75 °C (18740 (kg PE) (mol Ti)?1 h?1). 1H NMR spectroscopic studies of the reaction suggest that this thermally robust catalyst system generates an amine–phenoxy complex as the catalytically active species. The combinations 1 /[Ph3C]+[B(C6F5)4]?/AliBu3 and 2 /MAO also worked as high‐activity catalysts for the copolymerization of ethylene and propylene.  相似文献   

14.
The in situ synthesis of ethylene‐co‐norbornene copolymers/multi‐walled carbon nanotubes (MWNTs) nanocomposites was achieved by rare‐earth half‐sandwich scandium precursor [Sc(η5‐C5Me4SiMe3)(η1‐CH2SiMe3)2(THF)] (1) activated by [Ph3C][B(C6F5)4], through a non‐PFT (Polymerization Filling Technique) approach. MWNTs nanocomposites with low aluminum residue were obtained with excellent yields even though small amounts of triisobutylaluminium were needed as scavenger to prevent catalyst poisoning by MWNT impurities. MWNT bundles were disaggregated and highly coated with Poly(ethylene‐co‐norbornene) [P(E‐co‐N)] as revealed by transmission electron microscopy. Interestingly, P(E‐co‐N) copolymers showed Tg over 130 °C as well as norbornene content over 50 mol %; both values were higher than those obtained by the cationic active species in 1 /[Ph3C][B(C6F5)4]. A series of copolymerization reactions by 1 /[Ph3C][B(C6F5)4]/AliBu3 without MWNTs produced copolymers with the same unexpected features. The NMR analysis revealed the presence of rac‐ENNE and rac‐ENNNE sequences. Thus, AliBu3 changed the stereoirregular alternating copolymer microstructure produced by 1 /[Ph3C][B(C6F5)4]. We conclude that AliBu3 is not only a scavenger for CNT impurities, but it reacts with the THF ligand to give coordinatively unsaturated active species. Finally, P(E‐co‐N)/MWNT masterbatches were mixed with commercial TOPAS to produce cyclic olefin copolymer nanocomposites with excellent dispersion of filler. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5709–5719, 2009  相似文献   

15.
Using 1H- and 13C-NMR spectroscopies, cationic intermediates formed by activation of L2ZrCl2 with methylaluminoxane (MAO) in toluene were monitored at Al/Zr ratios from 50 to 1000 (L2 are various cyclopentadienyl (Cp), indenyl (Ind) and fluorenyl (Flu) ligands). The following catalysts were studied: (Cp-R)2ZrCl2 (R=Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, Me5, n-Bu, t-Bu), rac-ethanediyl(Ind)2ZrCl2, rac-Me2Si(Ind)2ZrCl2, rac-Me2Si(1-Ind-2-Me)2ZrCl2, rac-ethanediyl(1-Ind-4,5,6,7-H4)2ZrCl2, (Ind-2-Me)2ZrCl2, Me2C(Cp)(Flu)ZrCl2, Me2C(Cp-3-Me)(Flu)ZrCl2 and Me2Si(Flu)2ZrCl2. Correlations between spectroscopic and ethene polymerization data for catalysts (Cp-R)2ZrCl2/MAO (R=H, Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, Me5, n-Bu, t-Bu) and rac-Me2Si(Ind)2ZrCl2 were established. The catalysts (Cp-R)2ZrCl2/AlMe3/CPh3+B(C6F5)4 (R=Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, n-Bu, t-Bu) were also studied for comparison of spectroscopic and polymerization data with MAO-based systems. Complexes of type (Cp-R)2ZrMe+←Me-Al≡MAO (IV) with different [Me-MAO] counteranions have been identified in the (Cp-R)2ZrCl2/MAO (R=n-Bu, t-Bu) systems at low Al/Zr ratios (50-200). At Al/Zr ratios of 500-1000, the complex [L2Zr(μ-Me)2AlMe2]+[Me-MAO] (III) dominates in all MAO-based reaction systems studied. Ethene polymerization activity strongly depends on the Al/Zr ratio (Al/Zr=200-1000) for the systems (Cp-R)2ZrCl2/MAO (R=H, Me, n-Bu, t-Bu), while it is virtually constant in the same range of Al/Zr ratios for the catalytic systems (Cp-R)2ZrCl2/MAO (R=1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4) and rac-Me2Si(Ind)2ZrCl2/MAO. The data obtained are interpreted on assumption that complex III is the main precursor of the active centers of polymerization in MAO-based systems.  相似文献   

16.
Copolymerizations of ethylene with 1-hexene have been carried out by using two metallocenes: highly syndiospecific isopropylidene(1-η5-cyclopentadienyl)(1-η5-fluorenyl)-dimethylzirconium (Me2C(Flu)(Cp)ZrMe2, 1) and less syndiospecific (1-fluorenyl-2-cyclopentadienylethane)-dimethylzirconium (Et(Flu)(Cp)ZrMe2, 2), in the presence of [Ph3C][B(C6F5)4] as a cocatalyst. The effect of different types of bridges on the catalytic activity and comonomer reactivity was reported. The ethano bridged 2 compound of a smaller dihedral angle showed much higher activity than the 1 compound in the ethylene homo- and copolymerizations. The catalytic activities of the two compounds were enhanced about twice when a suitable amount of 1-hexene comonomer is present in the feed. The copolymerization of ethylene with 1-hexene revealed a noticeable influence of the type of bridge on the relative reactivity of the 1-hexene. 13C-NMR analysis of copolymers showed that compound 1 is characterized by lower rE, taken as an index of ethylene reactivity, and higher reactivity of 1-hexene. The bridge also affects the distribution of the 1-hexene along the copolymer chain, investigated through their product of reactivity ratios, rErH. The thermal properties and the density of copolymers were not affected by the type of bridge of the metallocenes, but mainly depended on 1-hexene content in the copolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2763–2772, 1999  相似文献   

17.
The structures of intermediates generated by the activation of 2,6-bis[1-(2,6-dimethylphenylimino)ethyl]pyridineiron(II) chloride (1) with various cocatalysts, methylalumoxane (MAO), trimethylaluminum (TMA), and TMA in combination with B(C6F5)3and Ph3CB(C6F5)4, is studied by 1H and 2HNMR spectroscopy. The 1/AlMe3system exhibits a higher catalytic activity in ethylene polymerization than the 1/MAO system. The activity of the latter decreases sharply with a decrease in the amount of AlMe3in MAO. Neutral Fe(II) complexes rather than cationic intermediates are suggested to be active components in both catalytic systems.  相似文献   

18.
Supported type cocatalysts using triphenylcarbenium perchlorate (Ph3CClO4) were prepared by impregnation on inorganic carrier, magnesium chloride (MgCl2) and applied to ethylene polymerizations with rac‐Et[Ind]2ZrCl2. Homogeneous polymerizations with Ph3CClO4 were also carried out for comparison. The activity of homogeneous polymerization was much lower than that obtained with methylaluminoxane (MAO). On the other hand, rac‐Et[Ind]2ZrCl2 activated by the supported type Ph3CClO4/MgCl2 system displayed high activity comparable to that obtained with MAO. From the results of fractionation and polymerization of the rac‐Et[Ind]2ZrCl2‐Ph3CClO4/MgCl2 catalyst system, it was found that the increased activity mainly came from the active species in the supernatant part. UV‐vis spectroscopic measurements combined with ICP analysis indicate that the active species in the supernatant fraction are composed of a stoichiometric amount of perchlorate and metallocene catalyst.  相似文献   

19.
The use of ultraviolet/visible spectroscopy (UV-Vis) for the prediction of metallocene catalyst potential for the polymerisation of olefins is described. Upon addition of methylaluminoxane (MAO) to rac-[C2H4(1-indenyl)2ZrCl2] ([Al]/[Zr] = 200) the ligand-to-metal charge transfer band shows a hypsochromic shift while a bathochromic shift is observed when more MAO is added ([Al]/[Zr] = 2000). These shifts can be explained by assuming that methylation of the zirconocene by MAO occurs in the case of [Al]/[Zr] = 200 while a cationic complex, the active catalytic system, is formed upon addition of more MAO, e.g., [Al]/[Zr] = 2000.  相似文献   

20.
Cationic rare earth metal alkyl species, generated by the treatment of mono(cyclopentadienyl) bis(alkyl) rare earth metal complexes with 1 equiv. of a borate compound such as [Ph3C][B(C6F5)4], act as an excellent catalyst for the polymerization and copolymerization of various olefins such as ethylene, 1-hexene, styrene, norbornene, dicyclopentadiene, and isoprene. These catalysts show unprecedented activity and regio- and stereo-selectivity and afford a series of new polymers which are difficult to be prepared previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号