首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
According to the classical hypoelasticity theory, the hypoelasticity tensor, i.e. the fourth order Eulerian constitutive tensor, characterizing the linear relationship between the stretching and an objective stress rate, is dependent on the current stress and must be isotropic. Although the classical hypoelasticity in this sense includes as a particular case the isotropic elasticity, it fails to incorporate any given type of anisotropic elasticity. This implies that one can formulate the isotropic elasticity as an integrable-exactly classical hypoelastic relation, whereas one can in no way do the same for any given type of anisotropic elasticity. A generalization of classical theory is available, which assumes that the material time derivative of the rotated stress is dependent on the rotated Cauchy stress, the rotated stretching and a Lagrangean spin, linear and of the first degree in the latter two. As compared with the original idea of classical hypoelasticity, perhaps the just-mentioned generalization might be somewhat drastic. In this article, we show that, merely replacing the isotropy property of the aforementioned stress-dependent hypoelasticity tensor with the invariance property of the latter under an R-rotating material symmetry group R⋆ G 0, one may establish a natural generalization of classical theory, which includes all of elasticity. Here R is the rotation tensor in the polar decomposition of the deformation gradient and G 0 any given initial material symmetry group. In particular, the classical case is recovered whenever the material symmetry is assumed to be isotropic. With the new generalization it is demonstrated that any two non-integrable hypoelastic relations based on any two objective stress rates predict quite different path-dependent responses in nature and hence can in no sense be equivalent. Thus, the non-integrable hypoelastic relations based on any given objective stress rate constitute an independent constitutive class in its own right which is disjoint with and hence distinguishes itself from any class based on another objective stress rate. Only for elasticity, equivalent hypoelastic formulations based on different stress rates may be established. Moreover, universal integrability conditions are derived for all kinds of objective corotational stress rates and for all types of material symmetry. Explicit, simple, integrable-exactly hypoelastic relations based on the newly discovered logarithmic stress rate are presented to characterize hyperelasticity with any given type of material symmetry. It is shown that, to achieve the latter goal, the logarithmic stress rate is the only choice among all infinitely many objective corotational stress rates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
程莉 《力学学报》1991,23(2):248-251
本文证明了若取客观应力率为 Kirchhoff 应力的 Oldroyd 导数,对于 Lame 参数λ、μ为常数的情况,率形式弹性本构律的可积条件为 λ=0。这显然表明在大变形情况下率形式弹塑性本构律与超弹性条件这两者之间在一般情况下并不协调。文中还讨论了几种弹性本构律可以近似用于大变形描述的情况。  相似文献   

4.
The nonlinear elastic response of a class of materials for which the deformation is subject to an internal material constraint described in experiments by James F. Bell on the finite deformation of a variety of metals is investigated. The purely kinematical consequences of the Bell constraint are discussed, and restrictions on the full range of compatible deformations are presented in geometrical terms. Then various forms of the constitutive equation relating the stress and stretch tensors for an isotropic elastic Bell material are presented. Inequalities on the mechanical response functions are introduced. The importance of these in applications is demonstrated in several examples throughout the paper.This paper focuses on homogeneous deformations. In a simple illustration of the theory, a generalized form of Bell's empirical rule for uniaxial loading is derived, and some peculiarities in the response under all-around compressive loading are discussed. General formulae for universal relations possible in an isotropic elastic, Bell constrained material are presented. A simple method for the determination of the left stretch tensor for essentially plane problems is illustrated in the solution of the problem of pure shear of a materially uniform rectangular block. A general formula which includes the empirical rule found in pure shear experiments by Bell is derived as a special case. The whole apparatus is then applied in the solution of the general problem of a homogeneous simple shear superimposed on a uniform triaxial stretch; and the great variety of results possible in an isotropic, elastic Bell material is illustrated. The problem of the finite torsion and extension of a thin-walled cylindrical tube is investigated. The results are shown to be consistent with Bell's data for which the rigid body rotation is found to be quite small compared with the gross deformation of the tube. Several universal formulas relating various kinds of stress components to the deformation independently of the material response functions are derived, including a universal rule relating the axial force to the torque.Constitutive equations for hyperelastic Bell materials are derived. The empirical work function studied by Bell is introduced; and a new constitutive equation is derived, which we name Bell's law. On the basis of this law, we then derive exactly Bell's parabolic laws for uniaxial loading and for pure shear. Also, form Bell's law, a simple constitutive equation relating Bell's deviatoric stress tensor to his finite deviatoric strain tensor is obtained. We thereby derive Bell's invariant parabolic law relating the deviatoric stress intensity to the corresponding strain intensity; and, finally, Bell's fundamental law for the work function expressed in these terms is recovered. This rule is the foundation for all of Bell's own theoretical study of the isotropic materials cataloged in his finite strain experiments on metals, all consistent with the internal material constraint studied here.  相似文献   

5.
In the present work a novel inelastic deformation caused internal dissipation inequality by isotropy is revealed. This inequality has the most concise form among a variety of internal dissipation inequalities, including the one widely used in constitutive characterization of isotropic finite strain elastoplasticity and viscoelasticiy. Further, the evolution term describing the difference between the rate of deformation tensor and the “principal rate” of the elastic logarithmic strain tensor is set, according to the standard practice by isotropy, to equal a rank-two isotropic tensor function of the corresponding branch stress, with the tensor function having an eigenspace identical to the eigenspace of the branch stress tensor. Through that a general form of evolution equation for the elastic logarithmic strain is formulated and some interesting and important results are derived. Namely, by isotropy the evolution of the elastic logarithmic strain tensor is embodied separately by the evolutions of its eigenvalues and eigenprojections, with the evolution of the eigenprojections driven by the rate of deformation tensor and the evolution of the eigenvalues connected to specific material behavior. It can be proved that by isotropy the evolution term in the present dissipation inequality stands for the essential form of the evolution term in the extensively applied dissipation inequality.  相似文献   

6.
In this paper a finite deformation constitutive model for rigid plastic hardening materials based on the logarithmic strain tensor is introduced. The flow rule of this constitutive model relates the corotational rate of the logarithmic strain tensor to the difference of the deviatoric Cauchy stress and the back stress tensors. The evolution equation for the kinematic hardening of this model relates the corotational rate of the back stress tensor to the corotational rate of the logarithmic strain tensor. Using Jaumann, Green–Naghdi, Eulerian and logarithmic corotational rates in the proposed constitutive model, stress–strain responses and subsequent yield surfaces are determined for rigid plastic kinematic and isotropic hardening materials in the simple shear problem at finite deformations.  相似文献   

7.
A constitutive model for creep deformation that describes the loading-history-dependent behavior of initially isotropic materials with different properties in tension and compression under stress vector rotations limited by 50–60° is presented within a thermodynamic framework. In the proposed constitutive model a kinematic hardening rule is adopted. This model also introduces an effective equivalent stress in the creep potential that is based on the first and second invariants of the effective stress tensor, and on the joint invariant of the effective stress tensor and eigenvector associated with the maximum principal Cauchy stress. The formulation of the kinematic hardening rule is presented and discussed. All the material parameters in the model have been obtained from a series of proposed basic experiments with constant stresses. These model parameters are then used to predict the creep deformation of the aluminum alloy under multiaxial loading with constant stresses, and under non-proportional uniaxial and non-proportional multiaxial loadings for both isothermal and nonisothermal processes.  相似文献   

8.
The rate-type constitutive relations of rate-independent metals with isotropic or kinematic hardening at finite elastic–plastic deformations were presented through a phenomenological approach. This approach includes the decomposition of finite deformation into elastic and plastic parts, which is different from both the elastic–plastic additive decomposition of deformation rate and Lee’s elastic–plastic multiplicative decomposition of deformation gradient. The objectivity of the constitutive relations was dealt with in integrating the constitutive equations. A new objective derivative of back stress was proposed for kinematic hardening. In addition, the loading criteria were discussed. Finally, the stress for simple shear elastic–plastic deformation was worked out.  相似文献   

9.
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill’s yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic–plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic–plastic constitutive model is the introduction of anisotropic effect in the Mie–Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM’s version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie–Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \({\varvec{\psi }}\) tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic–plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and \({\mathrm {895\,ms}}^{\mathrm {-1}}\) impact velocities is performed. A good agreement is obtained in each test.  相似文献   

10.
A phenomenological constitutive relation, for capturing the shear band formation in a rate-independent elastic-plastic material, is established. The model takes into account both the J2-isotropic flow and a threshold shear stress-based flow. The elastic-plastic constitutive tensor is expressed explicity in terms of elastic constants, the deviatoric stress tensor, the direction of the principal shear velocity-strain, and other material constants. This model particularly facilitates the resolution of the formation of the shear band even under material hardening conditions and does not demand an a priori knowledge of the orientation of the shear band. This is incorporated in an FEM, and the plane strain tensile test of Anand and Spitzig [1980] is numerically simulated. The computed results compare favorably with the experimental data. The shear band emerges more naturally as a solution to the boundary value problem, unlike the situations in solutions based on classical bifurcation methods. Nevertheless, the usefulness of the local instability condition (Ortiz et al. [1987]) is also demonstrated.  相似文献   

11.
A polar-coordinate representation of the yield surface in principal stress space is utilized to formulate constitutive equations for plane-stress plasticity of orthotropic sheets. The yield function and the associated flow rule are analysed by taking account of the orientation of the principal stress axes, and conditions for internal consistency of the model are derived. An orthotropic yield criterion is proposed, which is devised as an extension of a previous isotropic yield function involving the second and third invariants of the deviatoric stress tensor. Comparisons with micro-macro computations and experimental measurements of yield surfaces are discussed.  相似文献   

12.
A finite strain constitutive model to predict the deformation behaviour of orthotropic metals is developed in this paper. The important features of this constitutive model are the multiplicative decomposition of the deformation gradient and a new Mandel stress tensor combined with the new stress tensor decomposition generalized into deviatoric and spherical parts. The elastic free energy function and the yield function are defined within an invariant theory by means of the structural tensors. The Hill’s yield criterion is adopted to characterize plastic orthotropy, and the thermally micromechanical-based model, Mechanical Threshold Model (MTS) is used as a referential curve to control the yield surface expansion using an isotropic plastic hardening assumption. The model complexity is further extended by coupling the formulation with the shock equation of state (EOS). The proposed formulation is integrated in the isoclinic configuration and allows for a unique treatment for elastic and plastic anisotropy. The effects of elastic anisotropy are taken into account through the stress tensor decomposition and plastic anisotropy through yield surface defined in the generalized deviatoric plane perpendicular to the generalized pressure. The proposed formulation of this work is implemented into the Lawrence Livermore National Laboratory-DYNA3D code by the modification of several subroutines in the code. The capability of the new constitutive model to capture strain rate and temperature sensitivity is then validated. The final part of this process is a comparison of the results generated by the proposed constitutive model against the available experimental data from both the Plate Impact test and Taylor Cylinder Impact test. A good agreement between experimental and simulation is obtained in each test.  相似文献   

13.
In this paper we discuss the computational implementation of a new constitutive model that describes the muscle properties in a soft-bodied arthropod. Qualitatively, the muscle tissues behave similar to particle-reinforced rubber and are capable of large non-linear elastic deformations, show a hysteretic behavior, and display stress softening during the first few cycles of repeated loading. Such behavior can be described by the framework of pseudo-elastic transversely isotropic hyperelasticity. The computational model assumes compressible overall response, and is based upon a multiplicative split of the deformation gradient tensor into volumetric and isochoric parts. Details regarding the implementation of the computational model in the context of an implicit finite element solution procedure are presented. In particular, an explicit expression is provided for the material tangent stiffness tensor. Results obtained utilizing the new implementation are also presented.  相似文献   

14.
各向同性率无关材料本构关系的不变性表示   总被引:2,自引:1,他引:1  
陈明祥 《力学学报》2008,40(5):629-635
在内变量理论的框架下,针对各向同性率无关材料,使用张量函数表示理论建立了塑性应变全量及增量本构关系的最一般的张量不变性表示. 它们均由3个完备不可约的基张量组合构成,这3个基张量分别是应力的零次幂、一次幂和二次幂. 因此得出,塑性应变、塑性应变增量与应力三者共主轴. 通过对基张量的正交化,给出了本构关系式在主应力空间中的几何解释. 进一步,全量(或增量)本构关系中3个组合因子被表达为应力、塑性应变(或塑性应变增量)的不变量的函数. 当塑性应变(或塑性应变增量)的3个不变量之间满足一定关系时,所给出的本构关系将退化为经典的形变理论(或塑性势理论).最后,还讨论它与奇异屈服面理论的关系,当满足一定条件时,两者是一致的.   相似文献   

15.
This paper is concerned with objective stress update algorithm for elasto-plastic and elasto-viscoplastic endochronic theory within the framework of additive plasticity. The elastic response is stated in terms of hypoelastic model and endochronic constitutive equations are stated in unrotated frame of reference. A trivially incrementally objective integration scheme for rate constitutive equations is established. Algorithmic modulus consistent with numerical integration algorithm of constitutive equations is extracted. The implementation is validated by means of a set of simple deformation paths (simple shear, extension and rotation), two benchmark test in nonlinear mechanics (the necking of a circular bar and expansion of a thick-walled cylinder), a test which demonstrates the capabilities of the proposed model in simulation of cyclic loading and ratcheting in finite strain case (cyclically loaded notched bar) and finally, the analysis of a tensile test, which presents a shear band with a finite thickness independent of the finite element mesh using endochronic viscoplastic constitutive model.  相似文献   

16.
17.
The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Raniecki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic, natural reference configurations is used in order to accomplish multiplicative decomposition of total deformation gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate are derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jaumann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The formal equation for p.t. strain rate , describing p.t. deformation effects is proposed, based on experimental evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.
  相似文献   

18.
The objective of this article is to suggest new Eulerian rate type constitutive models for isotropic finite deformation elastoplasticity with isotropic hardening, kinematic hardening and combined isotropic-kinematic hardening etc. The main novelty of the suggested models is the use of the newly discovered logarithmic stress rate and the incorporation of a simple, natural explicit integrable-exactly rate type formulation of general hyperelasticity. Each new model is thus subjected to no incompatibility of rate type formulation for elastic behaviour with the notion of elasticity, as encountered by any other existing Eulerian rate type model for elastoplasticity or hypoelasticity. As particular cases, new Prandtl-Reuss equations for elastic-perfect plasticity and elastoplasticity with isotropic hardening, kinematic hardening and combined isotropic-kinematic hardening, respectively, are presented for computational and practical purposes. Of them, the equations for kinematic hardening and combined isotropic–kinematic hardening are, respectively, reduced to three uncoupled equations with respect to the spherical stress component, the shifted stress and the back-stress. The effects of finite rotation on the current strain and stress and hardening behaviour are indicated in a clear and direct manner. As illustrations, finite simple shear responses for the proposed models are studied by means of numerical integration. Further, it is proved that, among all possible (infinitely many) objective Eulerian rate type models, the proposed models are not only the first, but unique, self-consistent models of their kinds, in the sense that the rate type equation used to represent elastic behaviour is exactly integrable to really deliver an elastic relation. ©  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号