首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用粒子模拟方法,研究沿背景磁场方向传播的低频Alfvén波对磁化等离子体加热的物理过程.模拟结果表明:离子在垂直和平行于背景磁场的方向都得到明显的加热,在非共振加热阶段,垂直方向比平行方向的加热效果更加显著,形成温度各向异性;在随机加热阶段,垂直和平行方向的温度最终达到饱和且趋于一致.加热过程中,离子所获得动力学温度的最大值由外加磁场能量密度与等离子体密度的比值决定,与Alfvén波的频率及振幅无关;离子在平行于背景磁场方向上被加速,并最终获得相当于Alfvén波相速度大小的流速.  相似文献   

2.
Ion pickup by a monochromatic low-frequency Alfvén wave, which propagates along the background magnetic field, has recently been investigated in a low beta plasma (Lu and Li 2007 Phys. Plasmas 14 042303). In this paper, the monochromatic Alfvén wave is generalized to a spectrum of Alfvén waves with random phase. It finds that the process of ion pickup can be divided into two stages. First, ions are picked up in the transverse direction, and then phase difference (randomization) between ions due to their different parallel thermal motions leads to heating of the ions. The heating is dominant in the direction perpendicular to the background magnetic field. The temperatures of the ions at the asymptotic stage do not depend on individual waves in the spectrum, but are determined by the total amplitude of the waves. The effect of the initial ion bulk flow in the parallel direction on the heating is also considered in this paper.  相似文献   

3.
<正>Ion pickup by a monochromatic low-frequency Alfven wave,which propagates along the background magnetic field,has recently been investigated in a low beta plasma(Lu and Li 2007 Phys.Plasmas 14 042303).In this paper, the monochromatic Alfven wave is generalized to a spectrum of Alfven waves with random phase.It finds that the process of ion pickup can be divided into two stages.First,ions are picked up in the transverse direction,and then phase difference(randomization) between ions due to their different parallel thermal motions leads to heating of the ions.The heating is dominant in the direction perpendicular to the background magnetic field.The temperatures of the ions at the asymptotic stage do not depend on individual waves in the spectrum,but are determined by the total amplitude of the waves.The effect of the initial ion bulk flow in the parallel direction on the heating is also considered in this paper.  相似文献   

4.
Experimental observation of current drive by asymmetrical heating of ions in the Texas Tech Tokamak suggests that penetration of the fast Alfven wave near the fundamental ion-cyclotron resonance is restricted. A numerical study of the warm plasma dispersion relation near the ion-cyclotron resonance does indeed show this effect. The data reveal that, as the wave approaches the resonant layer from the high or low field side of the torus, it first passes through a region where asymmetrical heating takes place and the wave energy is absorbed by ions moving with high velocity parallel to the magnetic field  相似文献   

5.
The nonlinear interaction of a magnetized ion with two beating electrostatic waves (BEW) whose frequencies differ by a cyclotron harmonic can lead, under some conditions [Phys. Rev. E 69, 046402 (2004)], to vigorous acceleration for an ion with arbitrarily low initial velocity. When applied to an ensemble of ions, this mechanism promises enhanced heating over single electrostatic wave (SEW) heating for comparable wave energy densities. The extension of single ion acceleration to heating (SEWH and BEWH) of an ensemble of initially thermalized ions was carried out to compare the processes. Using a numerical solution of the Vlasov equation as a guideline, an analytical expression for the heating level was derived with Lie transforms and was used to show BEWH's superiority over all parameter space.  相似文献   

6.
The parametric decay instabilities(PDIs)of ion Bernstein wave with different input power levels are investigated via particie-in-cell simulation.It is found that the number of decay channels increases with the input power.Resonant mode-mode couplings dominate for a low input power.With increasing the input power,the nonresonant PDIs appear to dissipate the energy of the injected wave and give rise to edge ion heating.The generated child waves coupie with each other as well as the injected wave and/or act as a pump wave to excite new decay channels.As a result,the frequency spectrum is broadened with the increase of the input power.  相似文献   

7.
We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximation for various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultra-relativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.  相似文献   

8.
Considering the effects of ion nonlinear polarization drift and warm ions, we adopt two-fluid model to investigate the character of low-frequency Solitary Kinetic Alfvén Wave (SKAW hereafter) in a magnetic plasma. The results derived in this paper indicate that dip SKAW and hump SKAW both exist in a wide range in magnetosphere (for the pressure parameter β~10-5~0.01, where β is the ratio of thermal pressure to magnetic pressure, i.e. β=2μ0nT/B02). These two kinds of SKAWs propagate at either Super-Alfvénic velocity or Sub-Alfvénic velocity. In the inertial region β<<me/mi, the Sub-Alfvénic velocity dip SKAWs and hump SKAWs both exist; in the transmittal region β~ 2me/mi, dip SKAWs and hump SKAWs propagate at Super-Alfvénic velocity or Sub-Alfvénic velocity; Super-Alfvénic velocity hump SKAWs and Super-Alfvénic and Sub-Alfvénic velocity dip SKAWs are in the kinetic region 1>>β>> me/mi. These results are different from previous ones. That indicates that the effects of ion nonlinear polarization drift and warm ions are important and they cannot be neglected. The SKAW has an electric field parallel to the ambient magnetic field, which makes the SKAW take an important role in the acceleration and energization of field-aligned charged particles in magnetic plasmas. And the SKAW is also important for the heating of a local plasma. So it makes a novel physical mechanism of energy transmission possible.  相似文献   

9.
Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.  相似文献   

10.
Using laser induced fluorescence and passive spectroscopy on a magnetically confined low-temperature plasma, anomalous ion heating is observed which exceeds collisional heating from the electrons by a factor of up to five. Direct wave heating due to the 2.45?GHz microwave as well as stochastic heating by large-amplitude fluctuations could be ruled out as explanations. Good quantitative agreement is found when comparing the missing power in the ion species with heating power due to the dissipation of drift-wave turbulence. This turbulent energy transfer into the ion channel could have important consequences for the interpretation of transport in fusion plasmas.  相似文献   

11.
The electron exchange under grazing scattering of a negative hydrogen ion by a spherical cluster of aluminum atoms is investigated. To solve the problem, the wave packet’s propagation method, which doesn’t utilize the perturbation theory, has been used. The fraction of scattered negative ions has been calculated as a function of the ion’s velocity component parallel to the surface. It is shown that the yield of negative hydrogen ions under grazing scattering by a spherical cluster has a bell-shaped dependence on the value of the velocity component parallel to the surface.  相似文献   

12.
E. P. Potanin 《Technical Physics》2006,51(12):1586-1590
Resonance rf heating of gadolinium plasma ions is calculated in the configuration when an electric field travels along a permanent magnetic field and simultaneously rotates in the direction normal to the latter. Two model functions are taken as initial ion distribution functions over longitudinal velocities: one is a linear function of the velocity in the low velocity range and the other is a shifted semi-Maxwellian function. The ion transverse velocity distribution function is calculated under the assumption that the initial “transverse” distribution function is Maxwellian with a temperature of 5 eV. Ion fluxes toward collector plates are calculated by integrating the total distribution function over the allowed ranges of longitudinal and transverse velocities and transverse coordinates of the guiding center of the ions before the collector. The calculation is performed as applied to the 157Gd target isotope and its two nearest neighbors. The effect of the longitudinal temperature on the width of the heating efficiency resonance line and of the longitudinal magnetic field on the ion heating selectivity is studied. Also, the influence of the longitudinal wavenumber of the warming traveling electric field on the selectivity of an ion cyclotron resonance reactor is investigated. The heating efficiency is estimated from the frequency dependence of the fraction of ions heated to an energy above a given value.  相似文献   

13.
The ion transverse velocity distribution functions and the fraction η of ions heated above a certain energy W 1 are calculated as applied to the ion cyclotron resonance heating method of isotope separation. It is assumed that the longitudinal ion velocity distribution in a plasma source is nonequilibrium. Under high heating temperatures, the averaged ion transverse velocity distribution becomes essentially nonequilibrium and exhibits two maxima. The ion heating efficiency η is calculated for W 1=40 eV and various values of the parameter p=λ/L, where λ is the wavelength of the electric field of an antenna and L is the heating zone extension. The relative contributions of the time-of-flight and Doppler broadenings are evaluated.  相似文献   

14.
Complementary measurements of ion energy distributions in a magnetically confined high-temperature plasma show that magnetic reconnection results in both anisotropic ion heating and the generation of suprathermal ions. The anisotropy, observed in the C(+6) impurity ions, is such that the temperature perpendicular to the magnetic field is larger than the temperature parallel to the magnetic field. The suprathermal tail appears in the majority ion distribution and is well described by a power law to energies 10 times the thermal energy. These observations may offer insight into the energization process.  相似文献   

15.
It is shown that the parallel (magnetic field-aligned) velocity shear can drive the low-frequency (in comparison with the ion gyrofrequency) electrostatic (LF-ES) waves in an ultracold super-dense nonuniform magnetoplasma. By using an electron density response arising from the balance between the electrostatic and quantum Bohm forces, as well as the ion density response deduced from the continuity and momentum equations, a wave equation for the LF-ES waves is derived. In the local approximation, a new dispersion relation is obtained by Fourier transforming the wave equation. The dispersion relation reveals an oscillatory instability of dispersive drift-like modes in super-dense quantum magnetoplasmas.  相似文献   

16.
C. Krafft  A. Volokitin 《Physics letters. A》2013,377(16-17):1189-1198
Resonant interactions between energetic ion fluxes and wave packets they excite through fan instability are studied using self-consistent 3D simulations to explain the nonlinear wave–particle mechanisms at work and to estimate the energy lost by the flux and its sharing between wave emission and particle heating. The saturation of waves and the relaxation of particles are studied over long time periods. The ions are not only diffusing in the waves but are also trapped simultaneously by several potential wells of large amplitude overlapping waves. Estimates of the ion heating energy and rate are given and compared with space observations.  相似文献   

17.
A test electron beam is propagated in a specially designed traveling wave tube. It interacts with a nonresonant wave, and its energy distribution is recorded at the tube output. We report the direct experimental observation of the spatially periodic electron velocity bunching, and of a nonlinear effect on the electron velocity modulation: the synchronization of the particles with the wave responsible for Landau damping in plasma physics. The results are explained by second order perturbation theory in the wave amplitude.  相似文献   

18.
We develop a BIN computer code for simulating the interaction of a monochromatic ion beam with a plasma, which takes into account changes in the spatial distribution of the heated-plasma temperature. This enables us to calculate the heating of both homogeneous and inhomogeneous plasmas with parameters corresponding to their real spatial distributions at the time of maximum compression of the inertial confinement fusion (ICF) target. We present the results of a numerical simulation using the BIN code for the heating of a homogeneous deuterium–tritium plasma by a short pulse of monochromatic ions at various ion velocity and plasma–electron thermal velocity ratios. We also present the results of calculations for the heating of an inhomogeneous plasma of a non-cryogenic target formed as a beryllium deuteride–tritide shell by beams of light, medium, and heavy ions. As the initial distributions, we use the results of numerical simulations for such a target, precompressed by a laser pulse (carried out at the M. V. Keldysh Institute of Applied Mathematics using the DIANA code). We demonstrate the possibility of forming the central ignitor with the parameters sufficient for igniting the targets by beams of ions with energies E ~ 100 ? 400 MeV/u and specific energy densities of the beam Q ~ 5?20 GJ/cm2. The required specific energy density drops with increase in the ion energy; however, due to the increased path length, larger-charge ions have to be used.  相似文献   

19.
A theoretical model is developed explaining the atomic-number dependence of the velocity at which a transition occurs from the heating of the transverse energy of multiply charged channeled ions to its cooling. The model is based on the previously proposed interpretation of the influence of ion charge exchange on the redistribution of the ion flux passed through a thin single crystal with an isotropic distribution of the incident beam. The transition from heating to cooling is explained by the change in the ratio of the average charge of channeled ions to the average charge of ions with random motion in the crystal. In particular, the absence of such a transition for light ions is explained.  相似文献   

20.
A gyrating ion beam, with a ring-shaped distribution in velocity, supports negative energy beam modes near the harmonics of beam gyro-frequency. An investigation of the non-linear interaction of high-frequency whistler waves with the negative energy beam cyclotron mode is made. A non-linear dispersion relation is derived for the coupled modes. It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a side band of frequency lower than that of pump wave. In Case 2 a high-amplitude whistler wave decays into two lower frequency daughter waves, called the low-frequency mode and whistler waves. Generation mechanism of these waves has application in space and laboratory plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号