首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of highly alkylated azulenes with dimethyl acetylenedicarboxylate (ADM) in decalin or tetralin at 180–200° yields, beside the expected heptalene- and azulene-1,2-dicarboxylates, tetracyclic compounds of type ‘anti’- V and tricyclic compounds of type E (cf. Schemes 2–4 and 8–11). The compounds of type ‘anti’- V represent Diels-Alder adducts of the primary tricyclic intermediates A with ADM. In some cases, the tricyclic compounds of type E also underwent a consecutive Diels-Alder reaction with ADM to yield the tetracyclic compounds of type ‘anti’- or ‘syn’- VI (cf. Schemes 2 and 8–11). The tricyclic compounds of type E , namely 4 and 8 , reversibly rearrange via [1,5]-C shifts to isomeric tricyclic structures (cf. 18 and 19 , respectively, in Scheme 6) already at temperatures > 50°. Photochemically 4 rearranges to a corresponding tetracyclic compound 20 via a di-π-methane reaction. The observed heptalene- and azulene-1,2-dicarboxylates as well as the tetracyclic compounds of type ‘anti’'- V are formed from the primary tricyclic intermediates A via rearrangement (→heptalenedicarboxylates), retro-Diels-Alder reaction (→ azulenedicarboxylates), and Diels-Alder reaction with ADM. The different reaction channels of A are dependent on the substituents. However, the main reaction channel of A is its retro-Diels-Alder reaction to the starting materials (azulene and ADM). The highly reversible Diels-Alder reaction of ADM to the five-membered ring of the azulenes is HOMO(azulene)/LUMO(ADM)-controlled, in contrast to the at 200° irreversible ADM addition to the seven-membered ring of the azulenes to yield the Diels-Alder products of type E . This competing reaction must occur on grounds of orbital-symmetry conservation under SHOMO(azulene)/LUMO(ADM) control (cf. Schemes 20–22). Several X-ray diffraction analyses of the products were performed (cf. Chapt. 4.1).  相似文献   

2.
It is shown that azulene ( 1 ) and dimethyl acetylenedicarboxylate (ADM) in a fourfold molar excess react at 200° in decalin to yield, beside the known heptalene- ( 5 ) and azulene-1,2-dicarboxylates ( 6 ), in an amount of 1.6% tetramethyl (1RS,2RS,5SR,8RS)-tetracyclo[6.2.2.22,501,5]tetradeca-3,6,9,11,13-pentaene-3,4,9,10-tetracarboxylate(‘anti’-7) as a result of a SHOMO (azulene)/LUMO(ADM)-controlled addition of ADM to the seven-membered ring of 1 followed by a Diels-Alder reaction of the so formed tricyclic intermediate 16 (cf. Scheme 3) with a second molecule of ADM. The structure of ‘anti’-7 was confirmed by an X-ray diffraction analysis. Similarly, the thermal reaction of 5,7-dimehtylazulene ( 3 ) with excess ADM in decalin at 120° led to the formation of ca. 1% of ‘anti’- 12 , the 7,12-dimethyl derivative of‘anti’-7, beside of the corresponding heptalene- 10 and azulene-1,2-dicaboxylated (cf Scheme 2). The introduction of Me groups at C(1)and C(3)of azulene ( 1 ) and its 5,7-dimethyl derivative 3 strongly enhance the thermal formation of the corresponding tetracyclic compound. Thus, 1,3-dimethylazulene ( 2 ) in the presence of a sevenfold molar excess of ADM at 200° yielded 20% of ‘anti’- 9 beside an equal amount of dimethyl 3-mehtylazulene-1,2-dicarboxylate ( 8 ;cf. Scheme 1), and 1,3,5,7-tetramethylazulene ( 4 ) with a fourfold molar excess of ADM AT 200° gave a yield of 37% of‘anti’- 15 beside small amount of the corresponding heptalene- 13 and azulene-1,2-dicarboxylates 14 (cf.Scheme 2).  相似文献   

3.
Azulene-1-carbaldehydes which have Me substituents at C(3) and C(8) and no substituent at C(6) react with excess dimethyl acetylenedicarboxylate (ADM) in decalin at 200° to yield exclusively the Diels-Alder adduct at the seven-membered ring (cf. Scheme 3). The corresponding 1-carboxylates behave similarly (Scheme 4). Azulene-1-carbaldehydes which possess no Me substituent at C(8) (e.g. 11 , 12 in Scheme 2) gave no defined products when heated with ADM in decalin. On the other hand, Me substitutents at C(2) may also assist the thermal addition of ADM at the seven-membered ring of azulene-1-carbaldehydes (Scheme 6). However, in these cases the primary tricyclic adducts react with a second molecule of ADM to yield corresponding tetracyclic compounds. The new tricyclic aldehydes 16 and 17 which were obtained in up to 50% yield (Scheme 3) could quantitatively be decarbonylated with [RhCl(PPh3)3] in toluene at 140° to yield a thermally equilibrated mixture of four tricycles (Scheme 8). It was found that the thermal isomerization of these tricycles occur at temperatures as low as 0° and that at temperatures > 40° the thermal equilibrium between the four tricycles is rapidly established via [1,5]-C shifts. The establishment of the equilibrium makes the existence of two further tricycles necessary (cf. Scheme 8). However, in the temperature range of up to 85° these two further tricycles could not be detected by 1H-NMR. When heated in the presence of excess ADM in decalin at 180°, the ‘missing’ tricyclic forms could be evidenced by their tetracyclic trapping products ‘anti’- 45 and ‘anti’- 48 , respectively (Scheme 9).  相似文献   

4.
The thermal reaction of azulene-1-carbaldehydes 5 and 6 with excess dimethyl acetylenedicarboxylate (ADM) in decalin leads mainly to the formation of (1 + 1) and (1 + 2) adducts arising from the addition of ADM at the seven-membered ring of the azulenes (cf. Schemes 2 and 4). The (1 + 2) adducts are formed in a homo-Diels-Alder reaction of ADM and isomeric tricyclic carbaldehydes which are derived from the primary tricyclic carbaldehydes by reversible [1s5s]-C shifts (cf. Schemes 3 and 5). The thus formed pentacyclic carbaldehydes seem to undergo deep-seated skeletal rearrangements (cf. Scheme 7) which result finally in the formation of the formyl-tetrahydrocyclopenta[bc]acenaphthylene-tetraesters 12 and 19 , respectively. In other cases, e.g., azulene-1-carbaldehydes 7 and 8 (cf. Scheme 8), the thermal reaction with excess ADM furnishes only the already known tetracycfic (1 + 2) adducts of type anti- 26 to ‘anti’- 29 . The thermal reaction of 1,3,4,8-tetramethylazulene ( 9 ) with excess ADM in decalin resulted in the formation of two (1 + 2) and one (1 + 3) adduct in low yields (cf. Scheme 9). The latter turned out to be the 2,6-bridged barrelene derivative 32 . There are structural evidences that 32 is formed by similar pathways as the formyl-tetrahydrocyclopenta[bc]acenaphthylene-tetraesters (cf. Schemes 7 and 11). [2H3]Me-Labelling experiments are in agreement with the proposed mechanisms (cf. Scheme 13).  相似文献   

5.
It is shown that azulenes react with dimethyl acetylenedicarboxylate (ADM) in solvents such as toluene, dioxan, or MeCN in the presence of 2 mol-% [RuH2(PPh3)4] already at temperatures as low as 100° and lead to the formation of the corresponding heptalene-1,2-dicarboxylates in excellent yields (Tables 1 and 2). The Ru-catalyzed reaction of ADM with 1-(tert-butyl)-4,6,8-trimethylazulene ( 31 ) takes place even at room temperature, yielding the primary tricyclic addition product 32 and its thermal retro-Diels-Alder product dimethyl 4,6,8-trimethylazulene-1,2-dicarboxylate ( 21 ; Scheme 4). At 100° in MeCN, 32 yields 90% of 21 and only 10% of the corresponding heptalene. These observations demonstrate that [RuH2(PPh3)4] catalyzes the first step of the thermal formation of heptalenes from azulenes and ADM which occurs in apolar solvents such as tetralin or decalin at temperatures > 180° (cf. Scheme 1).  相似文献   

6.
Synthesis of new polycyclic compounds by means of intramolecular Diels-Alder reactions of cyclohexa-2,4-dien-1-one derivatives Thermal rearrangement of mesityl penta-2,4-dienyl ether ( 1 ), consisting of the isomers E (93%) and Z (7%), furnished, besides mesitol, the two mesityl penta-1,3-dienyl ethers 2 (24%) and 3 (3%), and the two tricyclic ketones 4 (4,5%) and 5 (12,5%) (Scheme 1). A probable mechanism for this formation of 2 involves a [1,5]-hydrogen shift in (Z)- 1 . Isomerisation of (E)- 1 to (Z)- 1 at 145° occurs via reversible sigmatropic [3,3]- and [5,5]-rearrangements of (E)- 1 to the cyclohexadienones 38 and 39 respectively (see Chapter A p. 1710, and Scheme 15). Formation of 3 from either (Z)- 1 or 2 is rationalized by a series of pericyclic reactions as outlined in Chapter A and Scheme 16. The tricyclic ketones 4 and 5 are undoubtedly formed by internal Diels-Alder reactions of the 6-pentadienyl-cyclohexa-2,4-dien-1-one 6 (Scheme 2). In fact, at 80° 6 is converted into 4 (5%) and 5 (35%). At 80° the cyclohexadienone derivative 7 furnished the corresponding tricyclic ketones 8 (15%) and 9 (44%) (Scheme 2). 5 and 9 contain a homotwistane skeleton. 8 and 9 are easily prepared by reaction of sodium 2,6-dimethylphenolate with 3-methyl-penta-2,4-dienyl bromide at ambient temperature, followed by heating, and finally separation by cristallization and chromatography. The cyclohexadienones 6 and 7 have mainly (E)-configuration. Here too (E) → (Z) isomerization is a prerequisite for the internal Diels-Alder reaction, and this partly takes place intramolecularly through reversible Claisen and Cope rearrangements (Scheme 17). On the other hand, experiments in the presence of 3,5-d2-mesitol have shown (Table 1) that intermolecular reactions, involving radicals and/or ions, are also operating (see Chapter B , p. 1712). Two different modi (I and II) exist for intramolecular Diels-Alder reactions (Scheme 18). Whereas only modus I is observed in the cyclization of 5-alkenyl-cyclohexa-l,3-dienes, in that of (2)-cyclohexadienones 6 and 7 (Scheme 2) both modi are operating. Only in modus 11-type transitions is the butadienyl conjugation of the side chain retained, so that modus 11-type addition is preferred (Chapter C p. 1716). Analogously to the synthesis of the tricyclic ketones 4 , 5 , 8 and 9 , the tricyclic ketone 15 (Scheme 4) and the tetracyclic ketone 11 (Scheme 3) are prepared from mesitol, pentenyl bromide and cycloheptadienyl bromide, respectively. From the polycyclic ketones derivatives such as the alcohols 16 , 17 , 18 , 19 , 23 , 24 and 25 (Schemes 9 and 11), policyclic ethers 20 , 21 , 22 and 26 (Scheme 10), epoxides 30 , 32 (Scheme 13), diketones 31 , 33 (Scheme 13) and ether-alcohols 35 and 36 (Scheme 14) have been prepared. Most of these conversions show high stereoselectivity.  相似文献   

7.
Hetro-Diels-Alder Reaction with 1,3-Thiazol-5(4H)-thiones On heating in toluene to 180° and on treatment with BF3·Et2O in CH2Cl2 room temperature, 1,3-dienes react with the C?S group of 1,3-thiazol-5(4H)-thiones 1 in a reversible Diels-Alder reaction to give spiro[4.5]-heterocycles of type 6. A 1:1 mixture of two regioisomeric cycloadducts is formed in the thermal reaction with 2-methylbuta-1,3-diene (isoprene, 5b ). In contrast, the formation of one regioisomer is strongly preferred in the BF3-catalyzed reaction. Frontier-orbital control as well as steric factors seem to be responsible for the observed regioselectivity. BF3-Catalyzed, cyclic 1,3-dienes and 1 also undergo a smooth Diels-Alder reaction. Whereas cyclohexa-1,3-diene ( 5c ) reacts with 1a and 1b to give a single isomer (presumably the ‘exo’-adduct), cyclopenta-1,3-diene ( 5d ) leads to a ca. 3:1 mixture of ‘exo’-and ‘endo’-isomer.  相似文献   

8.
A highly regio- and stereoselective Diels-Alder reaction between dienophiles of type I and dienes of type II (Scheme 1) gives rise to Diels-Alder adducts of type III . Upon treatment with BF3.Et2O, these adducts are smoothly converted into the corresponding enones (Scheme 6). Under mild acidic conditions, enone (±)- 33 gave bicyclic diketone (±)- 34 via an intramolecular Michael-type addition. Diketone (±)- 34 has the correct relative configuration and a suitable ketone function at C(6) for further conversion into the hexahydrobenzofuran portion of the avermectins and milbemycins.  相似文献   

9.
Total-Synthesis of (–)-Norgestrel (–)-Norgestrel ( 1a ) or (–)-norethindrone ( 1b ), two active progestational ingredients of currently used contraceptives have been synthesized stereoselectively. Compound 1a has been obtained starting from m-cresol methyl ether, dimethyl malonate, and (E)-1,4-dibromo-2-butene. The steroid skeleton has been constructed using an intramolecular Diels-Alder reaction of an o-quinodimethane derivative preceeded by a photo-enolization of an appropriate methyl-substituted acetophenone derivative. Chirality has been introduced at an early stage during an ScN reaction (cf. Scheme 1). Compound 1b has been obtained similarly using a previously reported mixture of the enantiomerically pure constitutional isomers 18b / 19b (cf. Scheme 3).  相似文献   

10.
A number of azulenes 1 , in particular those with π‐substituents at C(6) such as phenyl, 3,5‐dimethylphenyl, and 4‐biphenyl, have been reacted with 3 mol‐equiv. of dimethyl acetylenedicarboxylate (ADM) in MeCN at 110° (cf. Scheme 1). Main products had been, in all cases, the corresponding heptalene‐4,5‐dicarboxylates 2 . However, a whole number of side products, mainly rearranged (1+2)‐adducts with two molecules of ADM, in amounts of 0.2–9% were also isolated and characterized (cf. Scheme 2). The 2a,8a‐dihydro‐3,4‐ethenoazulene‐1,2‐dicarboxylates 14 , formed by energetically favorable ring closure from the solvent‐stabilized zwitterions 15 , resulting from bond heterolysis in the primary cycloadducts 12 (cf. Scheme 3), have been mechanistically identified as the pivotal intermediates responsible for the formation of all side product (cf. Schemes 5, 9, 12, and 13). Deuterium‐labeling experiments were in agreement with the proposed mechanisms, indicating that sigmatropic [1,5s]‐H shifts in 14 (cf. Scheme 6) as well as isoconjugate [1,4s]‐H shifts in resonance‐stabilized zwitterions of type 21 (cf. Scheme 9) are the crucial steps for side‐product formation. It is postulated that a concluding antarafacial 8e‐dyotropic rearrangement is responsible for the appearance of the 2,4a‐dihydrophenanthrene‐tetracarboxylates of type trans‐ 6 (cf. Scheme 9) in the reaction mixtures, which further rearrange thermally by a not fully understood mechanism into the isomeric tetracarboxylates 7 (cf. Schemes 10 and 11). Most surprising is the presence of a small amount (0.3–1%) of the azulene‐4,5,7,8‐tetracarboxylate 9 in the reaction mixture of azulene 1a and ADM. It is proposed that the formation of 9 is the result of a [1,5s]‐C shift in the spiro‐linked intermediates 24 , which, after prototropic shift and take‐up of a third molecule of ADM, disintegrate by a retro‐Diels‐Alder reaction into 9 and the phthalic diesters 30 (cf. Scheme 12). The UV/VIS spectra of the π‐substituted heptalene‐4,5‐dicarboxylates 2d – 2f and their double‐bond shifted (DBS) forms 2d – 2f (cf. Table 4 and Figs. 912) exhibit in comparison with the heptalene‐dicarboxylates 2a and 2′a , carrying a t‐Bu group at C(8), only marginal differences, which are mainly found in the relative intensity and position of heptalene bands II and III .  相似文献   

11.
Diels-Alder reactions of the (1H-indol-3-yl)-enacetamides and -endiacetamides 1a – d with some carbodieno-philes and 4-phenyl-3H-1,2,4-triazole-3,5(4H)-dione give rise to the novel amino-functionalized carbazole; 4 – 6 and 8 (Scheme 3). Ethenetetracarbonitrile reacts with 1b to furnish the Michael-type adduct 7 (Scheme 3). Structural aspects of the starting materials 1 , which exhibit above all 3-vinyl-1H-indole reactivity, are discussed with regard to the prediction of a Diels-Alder process.  相似文献   

12.
Thermal Generation and Reactions of (Benzylthio)-and (Arylthio)-Substituted Nitrile Ylides Thermolysis of 4-(benzylthio)- and 4-(arylthio)-1,3-oxazol-5(2H)-ones 6 , at 110–155° in the presence of dipolarophiles with activated C≡C, C?C, C?O, C?S, and N?N bonds, led to 5-membered cyclo-adducts and CO2 (cf. Schemes 3, 5-7). Heating 6a and 6c in the presence of ethyl propiolate yielded ethyl quinoline-3-carboxylate ( 19 ) and ethyl pyridine-3-carboxylate( 22 ), respectively (cf. Scheme 8). These results are rationalized on the basis of the intermediate formation of thio-substituted nitrile ylides of type 7 (cf. Scheme 2), which undergo regioselective 1,3-dipolar cycloadditions with reactive dipolarophiles. In the absence of such a dipolarophile, the nitrile ylides isomerize via a [1,4]-H shift to give 2-aza-1,3-butadienes of type 20 . The latter are trapped in a Diels-Alder reaction with ethyl propiolate (cf. Scheme 8).  相似文献   

13.
The thermal reaction of 1-[(E)-styrl]azulenes with dimethyl acetylenedicarboxylate (ADM) in decalin at 190–200° does not lead to the formation fo the corresponding heptalene-1,2-dicarboxylates (Scheme 2). Main products are the corresponding azulene-1,2-dicarboxylates (see 4 and 9 ), accompanied by the benzanellated azulenes trans- 10a and trans- 11 , respectively. The latter compounds are formed by a Diels-Alder reaction of the starting azulenes and ADM, followed by an ene reaction with ADM (cf. Scheme 3). The [RuH2(PPh3)4]-catalyzed reaction of 4,6,8-trimethyl-1-[(E)-4-R-styryl]azulenes (R=H, MeO, Cl; Scheme 4) with ADM in MeCN at 110° yields again the azulene-1,2-dicarboxylates as main products. However, in this case, the corresponding heptalene-1,2-dicarboxylates are also formed in small amounts (3–5%; Scheme 4). The benzanellated azulenes trans- 10a and trans- 10b are also found in small amounts (2–3%) in the reaction mixture. ADM Addition products at C(3) of the azulene ring as well as at C(2) of the styryl moiety are also observed in minor amounts (1–3%). Similar results are obtained in the [RuH2(PPh3)4]-catalyzed reaction of 3-[(E)-styryl]guaiazulene ((E)- 8 ; Scheme 5) with ADM in MeCN. However, in this case, no heptalene formation is observed, and the amount of the ADM-addition products at C(2) of the styryl group is remarkably increased (29%). That the substitutent pattern at the seven-membered ring of (E)- 8 is not responsible for the failure of heptalene formation is demonstrated by the Ru-catalyzed reaction of 7-isopropyl-4-methyl-1-[(E)-styryl]azulene ((E)- 23 ; Scheme 11) with ADM in MeCN, yielding the corresponding heptalene-1,2-dicarboxylate (E)- 26 (10%). Again, the main product is the corresponding azulene-1,2-dicarboxylate 25 (20%). Reaction of 4,6,8-trimethyl-2-[(E)-styryl]azulene ((E)- 27 ; Scheme 12) and ADM yields the heptalene-dicarboxylates (E)- 30A / B , purely thermally in decalin (28%) as well as Ru-catalyzed in MeCN (40%). Whereas only small amounts of the azulene-1,2-dicarboxylate 8 (1 and 5%, respectively) are formed, the corresponding benzanellated azulene trans- 29 ist found to be the second main product (21 and 10%, respectively) under both reaction conditions. The thermal reaction yields also the benzanellated azulene 28 which is not found in the catalyzed variant of the reaction. Heptalene-1,2-dicarboxylates are also formed from 4-[(E)-styryl]azulenes (e.g. (E)- 33 and (E)- 34 ; Scheme 14) and ADM at 180–190° in decalin and at 110° in MeCN by [RuH2(PPh3)4] catalysis. The yields (30%) are much better in the catalyzed reaction. The formation of by-products (e.g. 39–41 ; Scheme 14) in small amounts (0.5–5%) in the Ru-catalyzed reactions allows to understand better the reactivity of zwitterions (e.g. 42 ) and their triyclic follow-up products (e.g. 43 ) built from azulenes and ADM (cf. Scheme 15).  相似文献   

14.
The tricyclic dimethylene hydrocarbons 5 , 6 , 7 , 8 and d2- 5 , (Scheme 2), which are prepared by Wittig-reaction from the corresponding ketones, are rearranged, by heating, to 4-aryl-but-1-yne derivatives via the unstable 6-allenyl-1-methylene-cyclohexa-2, 4-diene intermediates (e.g. Scheme 14). Using the deuterium-labelled compound d2- 5 , it was shown that the allenyl moiety, formed by a retro-Diels-Alder reaction (cycloreversion) of the tricyclic dimethylene compound, migrates with complete inversion in the final o-semibenzene-benzene rearrangement (Schemes 11 and 14). Reaction of 6-propargyl-cyclohexa-2, 4-dien-1-ones with triphenylphosphonium methylide gives 6-propargyl-1-methylene-cyclohexa-2 4-dienes, which immediately undergo a [3s, 3s]-rearrangement to form 4-aryl-buta-1, 2-dienes (Scheme 9). In contrast, the rearrangement of the corresponding 4-propargyl-1-methylene-cyclohexa-2, 5- dienes proceeds by a radical mechanism (Schemes 10 and 13).  相似文献   

15.
The mass spectral retro Diels-Alder-reaction: 1,2,3,4-tetrahydrocarbazole 1,2,3,4-Tetrahydrocarbazole undergoes a retro Diels-Alder-reaction under electron impact. C(2) and C(3) are eliminated as ethylene. This is shown by measuring the deuterated derivatives 1a , 1b and 1c . Furthermore the oxo-1,2,3,4-tetrahydrocarbazole derivatives 3 and 4 are investigated in respect to the mass spectral retro Diels-Alder reaction too.  相似文献   

16.
1,3-Butadienyl Thiocyanates in the Diels-Alder Reaction Followed by a [3,3]-Sigmatropic Shift (E)- and (Z)-1,3-Butadienyl thiocyanates 3 , 4 , and 12–15 have been synthesized selectively. Their use as dienes for Diels-Alder reactions followed by a [3,3]-sigmatropic shift to obtain an isomeric isothiocyanate has been studied. The butadienyl thiocyanates are, unfortunately, not very reactive in Diels-Alder reactions. This disadvantage can be overcome, if a trapping reaction with EtOH is added to the two-step sequence. This sequence allows to get good yields of the O-ethyl thiocarbamates 18–23 , even if the first two reactions have not favorable equilibrium constants.  相似文献   

17.
On the Course of the Intramolecular Diels-Alder-Reaction of Cyclopentadienes with Olefinic Substituents The 1:3 mixture of 4-bromobicyclo [3.2.0]hept-2-en-6-one and -7-one ( 1/2 ), available by N-bromosuccinimide bromination of bicyclo [3.2.0]hept-2-en-6-one, reacted rapidly with the organo-magnesium and -zinc reagents 3, 10a, 10b and 10d by cyclobutanone ring opening and bromide ion expulsion to give the 5-substituted cyclopentadienes 5, 12a, 12b/12c , and 12d as non-isolated intermediates. Further transformation occured in situ either by a direct intramolecular Diels-Alder reaction (path a) or by a [1,5]-H-migration prior to the intramolecular Diels-Alder reaction (path b). The intermediate 5 followed only path a to give the bridged norbornene derivative 7 , the intermediates 12a, 12b and 12c followed only path b to give the annellated norbornene derivatives 15a, 15b and 15c , respectively, and the intermediate 12d followed both paths to give the bridged 14d and the annellated norbornene derivative 15d (in the ration of about 1.4:1). These observations are discussed in terms of the relative velocities of [1,5]-H-migrations and intramolecular Diels-Alder reactions. The major conclusions are: (1) bridged norbornene derivatives with a six-membered ring C (such as 14d ) can be prepared by an intramolecular Diels-Alder reaction from 5-alkenyl-cyclopentadienes 12 , as long as the dienophilic double bond is activated by an appropriate substituent (as in 12d ); (2) such 5-alkenyl-cyclopentadienes 12 are available from the reaction of the bromo-bicyclo-heptenones 1/2 with suitable C-nucleophiles 10 .  相似文献   

18.
Depending on the substitution pattern of the aminobutadiene subunit in the selected 3-vinylindoles 1, 3, 6 , and 9 , stereospecific [4 + 2] cycloadditions (‘endo’-preference) and dimerizations take place on reaction with N-phenylmaleimide. In the reaction of 9 with N-phenylmaleimide in the absence of a Lewis-acid catalyst, a competing ene reaction occurs in addition to the Diels-Alder reaction.  相似文献   

19.
Chiral acylnitroso dienophiles 14 , which were obtained from L -proline and from D -mandelic acid, reacted with cyclohexa-1,3-diene to give the expected diastereoisomers 15 and 16 (Scheme 2 and Table 1). The d.e. values for these Diels-Alder reactions were moderate; they are related to the molecular stiffness of the dienophiles. The absolute configuration of the major cycloadducts was interpreted in terms of HOMO/LUMO interactions, the approach being ‘endo’ and the acylintroso dienophiles reacting from their s-cis-conformation.  相似文献   

20.
dl-Pumiliotoxin-C (4) was synthesized in a practical manner from trans-4-hexenal (9) . The key step 14 → 15 (Scheme 3) involves an intramolecular Diels-Alder reaction giving mainly the cis-fused indanols 15a , which were converted to the cis-fused ketone 16 . After Beckmann-rearrangement of 16 the octahydroquinolinone 7 was transformed to the lactim-ether 23 . (Scheme 7). Reaction of 23 with propylmagnesium bromide followed by hydrogenation furnished dl- 4 in a highly stereoselective fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号