首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The autoxidation of CuI in aqueous MeCN has been studied using a Clark oxygen electrode in the presence and absence of Cu11. The reaction is inhibited by Cu11 in the pH range of 0.5 to 5.0, reaching a lower limiting value at the highest concentrations. The reaction order changes from 1 to 2 with respect to CuI under the influence of Cu2+ ion. Detailed kinetics analysis of a total of 275 measurements has shown that an unstable primary adduct CuO+2 decomoses to give .O or HO, depnding on pH, and also reacts directly with a second Cu+ ion, avoiding one-electrton reduction of O2 by this path. Reaction of HO is faster with CuI than with Cu11 by a factor of 20, and single-electron transfer within CuO+2 to Cu2+ and .O predominates over reaction with a second copper ion for [CuItot] < 2. 10?3M in the absence of Cu2+. The most likely value for the reaction of .O with CuI is 5.3 · 108 M ?1S?1, but even this high rate constant is at the limit of significance. All secondary reactions followinfg the initial formation of CuO+2 are shown to be very fast, a fact that should be properly considered in the discussion of mechanisms of copper-catalyzed oxidations and oxygenations.  相似文献   

2.
Using a new mathematical treatment, the nature and stability constants of the simple and mixed complex-species of copper(II) with hydroxyde and ammonia as ligands have been determined. The solubility curves of CuO in heterogeneous equilibrium have been identified in function of pH only and in function of pH and pNH3tot at 25° and unit ionic strength (NaClO4). The predominent species in the relatively dilute system limited by the ionic strength are [Cu2+], [Cu(OH)2], [Cu(OH)], [Cu(OH)], [Cu(NH3)], [Cu(NH3)], [Cu(NH3)], [Cu(NH3) (OH)+], [Cu(NH3)3(OH)+] and [Cu(NH3)2(OH)2].  相似文献   

3.
The ternary Cu2+?2,2′-bipyridyl-adenosine-5′-monophosphate-N(1)-oxide complex was investigated and compared with the binary Cu2+-adenosine-5′-monophosphate-N(1)-oxide complex (I) (cf. [2]). In both complexes Cu2+ is bound to the o-amino-N-oxide group of adenosine-5′-monophosphate-N(1)-oxide (HL). The stabilities of the complexes monoprotonated at the phosphate group are of the same order: log K = 11,20, and log K = 11,19. The acidity constants for the deprolonation of the phosphate group in these complexes are slightly different (pK = 5,55, and pK = 5,88), but as expected both values are lower than the corresponding value pK = 6,12 of the ligand.  相似文献   

4.
63Cu-NMR.-Spectra of Cu(CH3CN)4X (X = ClO, BF, PF) and Cu(C5H5N)4X (X = ClO, BF) in solution are reported at different temperatures and concentrations. The influence of temperature on the linewidth and chemical shift indicates an equilibrium of Cu(CH3CN) and Cu(C5H5N) with another complex of lower symmetry. The preferential solvation of Cu (I) by pyridin in a mixture acetonitrile/pyridine is clearly shown.  相似文献   

5.
The crystal structures of four anion cryptates [X? ? BT -6H+] formed by the protonated macrobicyclic receptor BT -6H+ with F?, Cl?, Br? and N have been determined. They provide a homogeneous series of anion coordination patterns with the same ligand. The small F?-ion is tetracoordinated, while Cl? and Br? are bound in an octahedron of H-bonds. The non-complementarity between these spherical anions and the ellipsoïdal cavity of BT -6H+ is reflected in ligand distortions. Structural complementarity is achieved for the linear triatomic substrate N, which is bound by two pyramidal arrays of three H-bonds, each interacting with a terminal N-atom of N. The formation constants of the complexes formed by BT -6H+ with a variety of anions (halides, N, NO, carboxylates, SO, HPO, AMP2?, ADP3?, ATP4?, P2O) have been determined. Very strong complexations are found, as well as marked electrostatic and structural effects on stability and selectivity; in particular the binding of F?, Cl?, Br?, and N may be analyzed in terms of the crystal structure data. The cryptand BT -6H+ is a molecular receptor containing an ellipsoïdal recognition site for linear triatomic substrates of size compatible with the size of the molecular cacity. Further developments of various aspects of anion coordination chemistry are considered.  相似文献   

6.
Recent work on the spontaneous (= acid-independent) cleavage of the mono-ol cation, i.e. in Cl?/ClO and NO/ClO mixed-electrolyte media has established (by analysis of anion-competition experiments) the existence of reactive ion pairs of the mono-ol cation with Cl? and NO. Their existence must be allowed for in the analysis of the rate data for the acid-induced cleavage (pH 0–1) of the mono-ol cation in these mixed-electrolyte media. Thus, previous data for acidic Cl?/ClO media have been re-interpreted in this work, and new data for NO/ClO media have been analyzed in the same sense. This analysis removes an apparent discrepancy in the orders of magnitude of ion aggregate stability constants between the mono-ol and similar binuclear cations.  相似文献   

7.
The solubility of precipitated Cd(OH)2 was determined at 25°C in 1 M NaClO4, as a function of pH and of the ammonia content of the solutions. Formation constants were obtained for the following hydroxo, ammine and hydroxo-ammine complexes: CdOH+, Cd(OH)2, Cd(OH), CdNH, Cd(NH3), Cd(NH3), Cd(NH3) and Cd(OH)2NH3. The solubility product of the hydroxide was also calculated. The presence of polynuclear species was investigated by titrimetric determinations of the hydrogen ion concentration at constant metal concentration.  相似文献   

8.
In aqueous acetonitrile (AN), Cu (I) forms the complexes Cu(AN)L+ and CuL with a series of substituted imidazoles (L). Stability constants logK of Cu(AN)+ + L ? Cu(AN)L+ and logβ2 were near 5 and 12, resp., log units for all ligands. The rate of autoxidation is described by ?d[O2]/dt=[CuL]2[O2](ka/(1+kb[CuL]) + (kc[L]+kd)/([CuL] + ke[Cu])), implying competition between one- or two-electron reduction of O2. The value of kc decreases from 5500M ?2S ?1 for unsubstituted imidazole to about 40M ?2S ?1 for 2-methylimidazole or 1,2-dimethyl-imidazole and essentially zero for the corresponding 2-ethyl-derivatives. On the other hand, ka and kb are much less influenced by the nature of the ligands, all values being near 5 · 104M ?2S ?1 and 103M ?1, respectively, for the complexes with the last four bases. Thus rather subtle sterical changes may strongly influence the relative importance of different pathways in the reduction of dioxygen by cuprous complexes.  相似文献   

9.
The replacement of Cl? by ethylenediamine (en) in PdCl has been followed spectrophotometrically at 25°C and μ = 1 (NaClO4); it proceeds in two steps leading to Pd(en)Cl2 and Pd(en), respectively. The observed rate constants are discussed in terms of the mechanism proposed by Reinhardt [1] for the successive ammination reactions of PdCl.  相似文献   

10.
We describe a photochemical system for the generation of hydrogen by water reduction under visible light or sunlight irradiation of aqueous solutions containing the following components: a photosensitizer, the Ru (bipy) complex, for visible light absorption; a relay species, the Rh (bipy) complex, which mediates water reduction by intermediate storage of electrons via a reduced state; an electron donor, triethanolamine (TEOA) which provides the electrons for the reduction process and a redox catalyst, colloïdal platinum, which facilitates hydrogen formation. The conditions for efficient hydrogen production and the influence of the concentration of the components have been investigated; the metal complexes act as catalysts with high turnover numbers; excess bipyridine facilitates the reaction. The process contains two catalytic cycles: a ruthenium cycle and a rhodium cycle. The Ru cycle involves oxidative quenching of the *Ru(bipy) excited state by Rh(bipy) forming Ru(bipy) which is converted back to Ru(bipy) by oxidation of the electron donor TEOA, which is thus consumed. The Rh cycle comprises a complicated set of transformations of the initial Rh(bipy) complex. The reduced rhodium complex formed in the quenching process undergoes a series of transformations involving the Rh(bipy) complex and hydridorhodium-bipyridine species, from which hydrogen is generated by reaction with the protons of water. In view of the storage of two electrons in the reduced rhodium species, the process is formally a dielectronic water reduction. The properties and eventual participation of [Rh(III)(bipy)2LL′]n+(L,L′ = H2O, OH?) species are investigated. It is concluded that at neutral pH in presence of excess bipyridine, the cycle involving regeneration of the Rh(bipy) complex is predominant. A number of experiments have been performed with modified systems. Hydrogen evolution is observed with other photosensitizers (like proflavin), other relay species (like Rh(dimethylbipy) or Co(II)-bipyridine complexes), other donor species, or in absence of the platinum catalyst. It also occurs in absence of photosensitizer by sunlight of UV. irradiation of Rh(bipy) or by visible light irradiation of iridium (III)-bibyridine complexes. These systems deserve further investigations. The present photochemical hydrogen generating system represents the reductive component of a complete water splitting process. Its role in solar energy conversion and in photochemical fuel production is discussed.  相似文献   

11.
A most recently developed method to quantify the fragmentation pathways of excited radical cations is presented. Using bicyclobutane cation as an illustrative example, the RRKM analysis of the breakdown diagram determined by He-Iα photoelectron-photoion coincidence spectroscopy is outlined. The results imply complete isomerization to 1,3-butadiene cation preceding the dissociative processes. The rate-energy functions of four competitive primary fragmentation reactions, leading to C3H, C4H, C4H and C2H are established. There is compelling evidence that the production of C2H fragment ions does not compete effectively with these four reactions. The extent of kinetic and competitive shift effects is determined. The derived enthalpies of formation are in excellent accord with the available high quality reference data. The relative importance of different fragmentation pathways which ultimately lead to fragment ions of identical mass to charge ratio is assessed.  相似文献   

12.
The stabilities of the Mn2+-, Co2+-, Ni2+-, Cu2+- and Zn2+-complexes with 2-(carboxymethyl)glutaric acid ( 2 ) and cis,cis-1,3,5-cyclohexanetricarboxylic acid ( 3 ) were measured potentiometrically at 25° and I = 0.5 (KNO3). Beside the complexes ML? protonated species MLH and MLH are also formed. Their stability constants are given in Table 1. A comparison between the stabilities of 2 or 3 and those of acetate, as a model for a monocarboxylate, or succinate and glutarate, as examples for dicarboxylates, indicates that in all species only one carboxylate is strongly bound whereas the second and third ones are probably not. The observation that Δlog K1 = log K ? log K as well as Δlog K2 = log K ? log K are practically constants with values of 0.34 ± 0.05 and 0.49 ± 0.07, respectively, for both ligands and the five metal ions studied is also in line with the proposed monodentate structures of the complexes ML?, MLH and MLH.  相似文献   

13.
The linear free energy relationship of Sicher for relative reactivity towards chromic acid oxidation (ΔΔG) as a function of thermodynamic stability (ΔG) has been reexamined with 23 pairs of epimeric alcohols. The plot of ΔG vs. ΔG has a slope of 0.8, a correlation coefficient of 0.97 and a standard deviation of 0.23 kcal/mol on ΔΔGOx. The limitations of the relationship and the exceptions are discussed.  相似文献   

14.
The kinetics of formation and dissociation of [V(H2O)5NCS]2+ have been studied, as a function of excess metal-ion concentration, temperature, and pressure, by the stopped-flow technique. The thermodynamic stability of the complex was also determined spectrophotometrically. The kinetic and equilibrium data were submitted to a combined analysis. The rate constants and activation parameters for the formation (f) and dissociation (r) of the complex are: k/M ?1 · S?1 = 126.4, k/s?1 = 0.82; ΔH /kJ · mol?1 = 49.1, ΔH/kJ · mol?1 = 60.6; ΔS/ J·K?1·mol?1= ?39.8, ΔSJ·K?1·mol?1 = ?43.4; ΔV/cm3·mol?1 = ?9.4, and ΔV/cm3 · mol?1 =?17.9. The equilibrium constant for the formation of the monoisothiocynato complex is K298/M ?1 = 152.9, and the enthalpy and entropy of reaction are ΔH0/kJ · mol?1 = ? 11.4 and ΔS0/J. K?1mol?1 = +3.6. The reaction volume is ΔV0/cm3· mol?1 = +8.5. The activation parameters for the complex-formation step are similar to those for the water exchange on [V(H2O)6]3+ obtained previously by NMR techniques. The activation volumes for the two processes are consistent with an associative interchange, Ia, mechanism.  相似文献   

15.
The ion/molecule reactions of the molecular ion, the C3H ion, and the C3H ion obtained from 3-chloropropene. 1-bromopropene, 2-bromopropene, 3-bromopropene, bromocyclopropane. and 3-iodopropene have been studied with their neutral precursor in a Fourier-transform mass spectrometer (FT/ICR). The molecular ions react to yield primarily C6H except for the ion derived from 1-bromopropene that is unreactive. The kinetics of the 3-bromopropene molecular ion reveals that 18% of these ions must possess a different structure which is unreactive. The fact that C3H ions obtained from 2-bromopropene are the only ones to undergo proton transfer is taken as evidence that only this parent compound gives rise to 2-propenyl cations by low-energy electron impact. The C3H ions generated in these systems are shown to be roughly an equal mixture of propargylium ions that react to yield C6H and unreactive cyclopropenium ions.  相似文献   

16.
Crystal structures and electrical properties of radical-cation salts of the chiral organic donor TMET (S,S,S,S,-bis-(dimethylethylenedithio)tetrathiafulvalene) are described. Two structural types, 2:1 with octahedral anions Pf, AsF, SbF, I (incommensurate), and 3:2 with tetrahedral anions BF?4, CIO?4, ReO?4 are observed. Resistivity measurements between 2 and 298 K indicate that the 3:2 types are organic metals, while the other compounds are semiconductors. (TMET)3(CIO4)2 is metallic down to about 120 K at ambient pressure and remains metallic down to 2 K at 8 kbar.  相似文献   

17.
The liquid phase fractionation factors αH = (18O/16O)H2O/(18O/16O)xo and αD = (18O/16O)D2O/(18O/16O)xo (X = Cl, Br, I) were calculated quantum mechanically between 0 and 100°. Experimental values were obtained in the case of BrO at 60° showing good agreement with the calculated results.  相似文献   

18.
The title cation ( = Ni2L) is formed in a variety of reactions (Schemes 1 and 2) in systems containing Ni2+ and (2-thiolatoethyl)-diphenylphosphine (= L?) in the absence of coordinating anions at Ni2+/L? ratios > 0.5 in apolar or moderately polar media. Solid [Ni2L3]CIO4 and [Ni2L3]BPh4 have been isolated. Job's plots confirm the Ni2L- stoichiometry in solution. 31P-NMR data are consistent with ≥ 97% Ni2L (vs. ? 3% of hypothetical Ni3L) at equilibrium and support the suggested configuration (Fig. 2). The equilibrium between NiL2 + NiL2Br2 and Ni2L + Br? varies with the solvent composition in CH23Cl2/EtOH mixtures. The rate of formation of Ni2L2Br2 from Ni2L and bromide (in high excess) in CH2Cl2 is first-order in [Ni2L]tot but depends on the ratio [Bu4NBr]tot/[Ni2L3 · ClO4]tot, even at a high excess of bromide. This is interpreted by efficient competition in ion-aggregate formation between the small perchlorate concentration introduced as the counterion of Ni2L, and the large excess of bromide.  相似文献   

19.
The n ionization energies I and the gas-phase basicities GB of CH3-, Cl-, or CN-substituted quinuclidines have been measured by PE and ICR spectroscopy. The dependence of the shifts ΔI and ΔGB (relative to the values of the parent molecule) allow conclusions about the charge dispersal accompanying the n ionization or the protonation of quinuclidine in the gas phase. The agreement with the results of a minimal basis set ab initio calculation is excellent. Comparison of the solution pKa values with either I or GB reveals that 2-substituted quinuclidines exhibit sizeable solvent-induced proximity effects, i.e. that the corresponding quinuclidinium ions are more acidic in solution than expected on the basis of the gas-phase basicities. This agrees with earlier results concerning 2-substituted pyridines.  相似文献   

20.
Results are reported for high-energy beam experiments which establish the formation of endohedral carbon cluster-noble gas compounds by bimolecular reactions of C (x = 60, 70; n = 1, 2, 3) with He and C with Ne. The ions were accelerated up to 8 ke V in a four-sector mass spectrometer and allowed to collide with the noble gas in a collision chamber at room temperatur. Product ions were monitored with a B/E = constant linked scan. Within the sensivity of the experiments, no carbon cluster-gas compounds were observed in the reactions of C with H2, D2, O2, Ar, and SF6, or of C with O2. The observed fall in the cross-section for carbon cluster-noble gas compounds with increasing size of the noble gas, the observation of unimolecular loss of C2 from mass-selected CxHe+ ions, and the elimination of carbon fragments instead of He observed in the formation of the collision-induced CxHen+ product ions are taken as evidence for endohedral compound formation. Results of ab initio molecular-orbital calculations for the perpendicular penetration of the plane of ionized benzene with He, Ne, and Ar indicate that sufficient kinetic energy should be available in the collisions with C to penetrate the C cage at the collision energies of the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号