首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
The reactions of propyl ether radical cations close to threshold are initiated by (reversible) formation of γ-disitonic isomers, R$ \mathop {\rm O}\limits^ + $ (H)CH2CH2CH2·. The three methylene groups in these ions lose their positional identity by ring closure/ring opening via [cyclopropane + alcohol] intermediates. Extensive hydrogen exchange occurs within the C3-chain. When R is not methyl the γ-distonic isomer undergoes further intramolecular hydrogen atom transfer reactions that lead to formation of α- and β-distonic ions. The α-distonic isomers expel ethyl and propyl radicals by C? O bond cleavage.  相似文献   

2.
The mass spectra of some (Z)α-(4-R′-phenyl)-β-(2-thienyl-5-R)acrylonitriles (R = H, CH3, Br; R′ = H, CH3O, CH3, Cl, NO2) at 70 eV are reported. Mass spectra exhibit pronounced molecular ions. The compound's where R = H, and CH3 are characterized by the occurrence of a strong [M - H]+ peak. Moreover, in all the compounds a m/z 177 peak occurs. In the compounds where R = H, [M - HS]* and [M - CHS]* ions are present except the nitroderivatives. Where R = CH3, [M - HS]+ ion occurs.  相似文献   

3.
Ion-molecule reactions of the mass-selected distonic radical cation +CH2-O-CH 2 · (1) with several heterocyclic compounds have been investigated by multiple stage mass spectro- metric experiments performed in a pentaquadrupole mass spectrometer. Reactions with pyridine, 2-, 3-, and 4-ethyl, 2-methoxy, and 2-n-propyl pyridine occur mainly by transfer of CH 2 to the nitrogen, which yields distonic N-methylene-pyridinium radical cations. The MS3 spectra of these products display very characteristic collision-induced dissociation chemistry, which is greatly affected by the position of the substituent in the pyridine ring. Ortho isomers undergo a δ-cleavage cyclization process induced by the free-radical character of the N-methylene group that yields bicyclic pyridinium cations. On the other hand, extensive CH 2 transfer followed by rapid hydrogen atom loss, that is, a net CH+ transfer, occurs not to the heteroatoms, but to the aromatic ring of furan, thiophene, pyrrole, and N-methyl pyrrole. The reaction proceeds through five- to six-membered ring expansion, which yields the pyrilium, thiapyrilium, N-protonated, and N-methylated pyridine cations, respectively, as indicated by MS3 scans. Ion 1 fails to transfer CH 2 to tetrahydrofuran, whereas a new α-distonic sulfur ion is formed in reactions with tetrahydrothiophene. Unstable N-methylene distonic ions, likely formed by transfer of CH 2 to the nitrogen of piperidine and pyrrolidine, undergo rapid fragmentation by loss of the α-NH hydrogen to yield closed-shell immonium cations. The most thermodynamically favorable products are formed in these reactions, as estimated by ab initio calculations at the MP2/6-31G(d,p)//6-31G(d,p) + ZPE level of theory.  相似文献   

4.
The α-distonic sulphur-containing ion $ {}^ \cdot {\rm CH}_2 \mathop {\rm S}\limits^ + \left({{\rm CH}_3 } \right)_2 $ has been generated by transfer of CH from ionized oxirane to dimethyl thioether and distinguished from the molecular ion of ethyl methyl thioether by collision induced dissociation (CID) experiments. In particular, the α-distonic ion expels CH2 to a minor extent following collision, whereas the molecular ion of ethyl methyl thioether does not undergo this reaction. The metastable C3H8S ions formed by CH transfer to dimethyl thioether and ionization of ethyl methyl thioether decompose by competing losses of CH3R˙, CH4 and C2H4. The elimination of ethene is taken as evidence for isomerization of the α-distonic ion to the molecular ion of ethyl methyl thioether prior to spontaneous dissociation. Evidence for the formation of stable α-distonic sulphur-containing ions by transfer of CH from ionized oxirane to methyl phenyl thioether has not been obtained. The collision-induced and spontaneous reactions of the ions formed by CH transfer to methyl phenyl thioether indicate that a mixture of the radical cations of CH3C6H4SCH3, C6H5SCH2CH3 and C6H5CH2SCH3 is generated implying that attack on the phenyl group occurs in addition to a formal insertion of a methylene entity in a C? S bond.  相似文献   

5.
The mass spectra of the methyl-, trideuteromethyl-, ethyl- and pentadeuteroethylethers of 2,2′-bis-trimethylsilylbenzhydrol are reported. The most significant ions arise from the [M – CH3]+ ion, formed by loss of a methyl radical from one of the trimethylsilyl groups. After ring formation by interaction of the siliconium ion centre with an aromatic nucleus, the ion loses (CH3)3Si? OR (R = CH3, C2H5, CD3 and C2D5), giving ion m/e 223. The fragment (CH3)3Si? OCH3 is also eliminated in the four ethers investigated from the ion [M – R]+. Attack of the siliconium ion. Indications are found for a transannular hydrogen/deuterium rearrangement and a transannular elimination reaction. The intensity of some peaks in the spectra are discussed in relation to group R.  相似文献   

6.
The γ-distonic radical ions R$ \mathop {\rm O}\limits^ + $CHR′CH2?HR″ and their molecular ion counterparts R$ \mathop {\rm O}\limits^{{\rm + } \cdot } $CHR′CH2CH2R″ have been studied by isotopic labelling and collision-induced dissociation, applying a potential to the collision cell in order to separate activated from spontaneous decompositions. The stability of CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, C2H5$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?H2, CH3$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3 and C2H5$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3, has been demonstrated and their characteristic decomposition, alcohol loss, identified. For all these γ-distonic ions, the 1,4-H abstraction leading to their molecular ion counterpart exhibits a primary isotope effect.  相似文献   

7.
 The molecular ion 1 of N-(n-propoxy)benzaldimine I rearranges by an 1,5-H-shift to the δ-distonic ion 2 which subsequently cyclizes to the α-distonic ion 3. Homolytic cleavage of the N–O bond in 3 results in the δ-distonic ion 4 which expels CH2O leading to the β-distonic ion 5. Ion 5 is also formed from the molecular ions of tetrahydrooxazines II and III and from M+• of phenylazetidine IVa. In a subsequent step, ion 5 cyclizes to the N-protonated 3,4-dihydroisoquinolinium ion 6. The syntheses of IIIV and their derivatives are described.  相似文献   

8.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

9.
Summary.  The molecular ion 1 of N-(n-propoxy)benzaldimine I rearranges by an 1,5-H-shift to the δ-distonic ion 2 which subsequently cyclizes to the α-distonic ion 3. Homolytic cleavage of the N–O bond in 3 results in the δ-distonic ion 4 which expels CH2O leading to the β-distonic ion 5. Ion 5 is also formed from the molecular ions of tetrahydrooxazines II and III and from M+• of phenylazetidine IVa. In a subsequent step, ion 5 cyclizes to the N-protonated 3,4-dihydroisoquinolinium ion 6. The syntheses of IIIV and their derivatives are described. Corresponding author. E-mail: wolfgang.wiegrebe@chemie.uni-regensburg.de Received February 12, 2002; accepted (revised) April 9, 2002 RID="a" ID="a" Dedicated to Prof. Dr. J. Knabe, Saarbrücken, Germany  相似文献   

10.
By combining results from a variety of mass spectrometric techniques (metastatle ion, collisional activation, collision-induced dissociative ionization, neutralization–reionization spectrometry and appearance energy measurements) and the classical method of isotopic labelling, a unified mechanism is proposed for the complex unimolecular chemistry of ionized 1,2-propanediol. The key intermediates involved are the stable hydrogen-bridged radical cations [CH2?C(H)? H…?O…?O(H)CH3]+˙, which were generated independently from [4-methoxy, 1-butanol]+˙ (loss of C2H4) and [1-methoxyglycerol]+˙ (loss of CH2O), [CH3? C?O…?H…?O(H)CH3]+˙ and the related ion-dipole complex [CH2?C(OH)CH3/H2O]+˙. The latter species serves as the precursor for the loss of CH3˙ and in this reaction the same non-ergodic behaviour is observed as in the loss of CH3˙ from the ionized enol of acetone.  相似文献   

11.
Electron impact ionization mass spectra of numerous alkenyl methyl ethers CnH2n-1OCH3 (n = 3–6) recorded under normal (4 kV, 70 eV, 175°C) and low-energy, low-temperature (8 kV, 12 eV, 75 °C) conditions are reported. The influence of the position and stereochemistry of the double bond on the dissociation of ionized alkenyl methyl ethers is discussed. The mechanisms by which these ethers fragment after ionization have been further investigated using extensive 2H-labelling experiments and by studying the energy dependence of the reactions. Ethers of allylic alcohols show spectra that are distinct from those of the isomeric species in which the double bond is separated by one or more sp3 carbon atoms from the carbon atom carrying the methoxy group. Three principal primary fragmentations are observed. The most common process, especially for ionized ethers of allylic alcohols, is loss of an alkyl group. This reaction often occurs by simple α-cleavage of radical-cations of the appropriate structure; however, alkyl groups attached to either end of the double bond are also readily lost. These formal β- and γ-cleavages are explained in terms of rearrangements via distonic ions and, at least in the case of γ-cleavages, ionized methoxycyclopropanes. Ionized homoallyl methyl ethers tend to eliminate an allylic radical, particularly at high internal energies, with formation of an oxonium ion (CH3 +O?CH2 or CH3 +O?CHCH3). The ethers of linear pentenols and hexenols show abundant [M - CH3OH]+? ions in their spectra, especially when a terminal methoxy group is present Methanol loss also takes place from ionized ethers of allylic alcohols in which there is a Δ-hydrogen atom; this process is significantly favoured by cis, rather than trans, stereochemistry of the double bond.  相似文献   

12.
Summary N-Butoxy- and N-propoxy-imines derived fromo-,m-, andp-substituted benzaldehydes (X = F, Cl, Br, I) decompose upon electron impact to the respective aldoximes by loss of C n H2n and competitivelyvia 1,5-distonic radical cations by loss of CH2O to 1,3-distonic ions which eliminate H and/or a halogen atom in the course of homolytic aromatic substitution, giving rise to cyclic (M-CH2O-H)+ or (M-CH2O-X )+ ions.Dedicated with warm regards to Prof. Dr.D. Seebach, Zürich, on the occasion of his 60th birthday  相似文献   

13.
Several isomeric forms of the vinyl alcohol/water radical cation have been investigated by high-level ab initio molecular orbital theory calculations, including electron correlation effects. Of the ions considered here, the anti form of the ? O ?H ?O? bridged complex is calculated to be the lowest in energy, having a stabilization energy of 100 kJ mol?1 with respect to the dissociation products [CH2CHOH]+˙ and H2O. Although the isomeric ions may formally be represented as distonic ions, hydrogen-bridged ions and ion–dipole complexes, the only significant barrier separating the isomers appears to be the anti?syn isomerization barrier. However, in the ? O ?H ?O? bridged complex this barrier is found to be considerably lowered relative to the anti?syn isomerization barrier for the free vinyl alcohol radical cation.  相似文献   

14.
The behavior of some substituted cyclopentadienylmanganese ions has been studied by tandem mass spectrometry. This metastable ion study showed that only C5H5Mn+ and (C5H4CN)Mn+ ions retain their nido-cluster structure (1), which is characterized by a simple metal-ligand bond cleavage. Other substituted ions, RXC5H4Mn+, rearrange to a different extent, depending on the nature of the substituent. The first rearrangement step is R radical migration to the central metal atom, leading to RMnC5H4X+-type ions (2). These ions decompose by elimination of X (for X=CO) or with formation of RMnX+, but further rearrangements can also occur. These are the reverse migration of R from the metal atom to the π-ligand (for R=H, Ph) and cyclopentadienyl ring expansion (for X=CH2). Collisional activation mass spectra contained an Mn+ ion peak, which can indicate the existence of stable type 1 structures for most cyclopentadienylmanganese ions. Carboxyl and hydroxymethyl derivatives exist, presumably as ions of type 2. The neutralization-reionization mass spectra of RXC5H4Mn+ ions are also discussed.  相似文献   

15.
16.
A study of the chemical ionization (CI) and collisional activation (CA) spectra of a number of α, β-unsaturated nitriles has revealed that the even-electron ions such as [MH]+ and [MNH4]+ produced under chemical ionization undergo decomposition by radical losses also. This results in the formation of M +˙ ions from both [MH]+ and [MNH4]+ ions. In the halogenated molecules losses of X˙ and HX compete with losses of H˙ and HCN. Elimination of X˙ from [MH]+ is highly favoured in the bromoderivative. The dinitriles undergo a substitution reaction in which one of the CN groups is replaced with a hydrogen radical and the resulting mononitrile is ionized leading to [M ? CN + 2H]+ under CI(CH4) or [M ? CN + H + NH4] and [M ? CN + H + N2H7]+ under CI(NH3) conditions.  相似文献   

17.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

18.
The key intermediates to the fragmentation of metastable methyl and ethyl benzoate radical cations are α- and β-distonic isomers of the molecular ions. The α-distocic isomers are also formed by fragmentation of longer chain alkyl benzoates, but may not be long-lived, stable species. Rearrangement of the α-distonic ions prior to fragmentation can take place, but (re)formation of the benzoate molecular ions does not occur.  相似文献   

19.
A set of pentacoordinated dimethyltin(IV) complexes of flexible N‐protected amino acids and fluorinated β‐diketone/β‐diketones was screened for their antibacterial activity against Pseudomonas aeruginosa , Staphylococcus aureus and Streptomyces griseus . These pentacoordinated complexes of the type Me2SnAB (where : R = CH(CH3)C2H5, A1H; CH2CH(CH3)2, A2H; CH(CH3)2, A3H; CH2C6H5, A4H; and BH = R'C(O)CH2C(O)R″: R′ = C6H5, R″ = CF3, B1H; R′ = R″ = CH3, B2H; R′ = C6H5, R″ = CH3, B3H; R′ = R″ = C6H5, B4H) were generated by the reactions of dimethyltin(IV) dichloride with sodium salts of flexible N‐protected amino acids (ANa) and fluorinated β‐diketone/β‐diketones (BNa) in 1:1:1 molar ratio in refluxing dry benzene solution. Plausible structures of these complexes were elucidated on the basis of physicochemical and spectral studies. 119Sn NMR spectral data revealed the presence of pentacoordinated tin centres in these dimethyltin(IV) complexes.  相似文献   

20.
Synthesis and Structural Studies of Aluminum Dialkylamines and Dialkylamides: N‐Chirality of (CH3)3AlNHRR′ and cis‐trans ‐Isomerism at X2AlNRR′ (X = CH3, Cl, H) Aluminum dialkylamines and dialkylamides were prepared from Al(CH3)3 and NH(CH3)R′ (R′: –C2H5, –tC4H9) and characterized by elemental analyses, 1H‐, 13C‐, and 27Al‐NMR spectroscopy. The crystal structures of [(CH3)2AlN(CH3)(–tC4H9)]2 ( IV ), [Cl2AlN(CH3)(C2H5)]2 ( V ), and [H2AlN(CH3)(C2H5)] ( VI‐trans and VI‐cis ) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号