首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Raman phonon spectroscopy has been used to study photodimerization reaction inp-chloro cinnamic acid (pCCA) crystal. The β-form of the crystal yields the 4,4′-dichloro-β-truxinic acid dimer. Six distinct low frequency phonon bands are observed in thepCCA monomer crystal. On reaction progress, these bands show a monotonic shift to lower frequencies and broaden out. Finally, in the dimer crystal the phonon spectrum shows two weak broad bands. These results suggest that the reaction is homogeneous in the initial stages and, as the product concentration increases, the lattice becomes highly disordered. The reactant and the product were characterised by infrared and Raman spectroscopy. The disappearance of aliphatic C=C bond stretching vibration and appearance of cyclobutane ring deformation and cyclobutane ring-breathing vibrations on reaction confirm photodimerization by cyclobutane ring formation. The large Stoke's shift between the absorption and emission band suggest strong exciton-phonon coupling in the monomer lattice. This reaction seems to be phonon-mediated.  相似文献   

2.
Photopolymerization reaction in di n-propyl ester of dicyano p-phenylene diacrylic acid crystal is shown to be mediated by exciton–phonon coupling. Raman phonon spectra suggest that at the initial stage of reaction progress, the reactant and the product form a solid solution. In the later stage, the reactant segregates out and forms its own lattice. The polymer lattice is shown to maintain a good degree of order. Infrared and Raman spectra confirm that the polymerization occurs by cyclobutane ring formation. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The solid state photodimerization reaction ofo-methoxy cinnamic acid is shown to be mediated by a lattice phonon. The phonon participation, in this case, is through a mode softening and not through strong exciton-phonon coupling as is generally observed. Raman phonon spectroscopy suggests that the reaction is heterogeneous. Infrared spectroscopy has been used to study the internal vibrations of the reactant and the product. Partly presented at the International Laser Science Conference II, 1986 held at Seattle, USA.  相似文献   

4.
The laser Raman phonon spectroscopic technique has been used to study the photopolymerization reaction of 1,4 bis[β-pyridyl(2)vinyl] benzene (P2VB). Raman and infrared spectroscopy have been used to study the intramolecular vibrations of the reactant and the product and to characterize them. Absence of any large Stokes' shift between absorption and emission bands of the monomer crystal shows that exciton–phonon coupling is weak, and the reaction is not likely to be phonon mediated. Phonon spectroscopy shows that the reaction proceeds by a heterogeneous mechanism. Sharp phonon bands of the product, however, suggests that the photopoly P2VB lattice is highly ordered.  相似文献   

5.
Poly(α-isobutyl-L -aspartate) was prepared by the polycondensation reaction of p-nitrophenyl ester of α-isobutyl-L -aspartate and the conformation of the poly(β-amino acid) was investigated by X-ray diffraction, polarized infrared, circular dichroism (CD), optical rotatory dispersion (ORD), and NMR spectroscopy. α-Isobutyl β-p-nitrophenyl-L -aspartate hydrochloride and hydrobromide were used as monomers and dimethylformamide, chloroform, and chlorobenzene, as solvents. A high-molecular-weight polymer with [η] 1.0 dl/g (dichloroacetic acid, 25°C) was formed in the polymerization of the hydrochloride in chloroform at 25°C. The X-ray diagram and polarized infrared spectrum of the stretched polymer film obtained from a chloroform solution suggested a cross-β-form as the most probable structure in the solid state. The CD spectra of the polymer in a 2,2,2-trifluoroethanol (TFE) solution and its film cast from the solution showed a peak at 205 nm and a trough at 190 nm which were assigned to a β-structure. The polymer was associated in chloroform. The NMR and ORD spectra in chloroform were similar to those in TFE, which suggests that the polymer also exists in the β-structure in chloroform. The addition of small amounts of dichloroacetic acid and sulfuric acid to chloroform and TFE solutions, respectively, destroyed the β-structure. A random copolymer of α-isobutyl-L -aspartate with β-alanine was also prepared by polycondensation reaction. The copolymer apparently did not form an ordered structure in the solid state or in solution.  相似文献   

6.
The solid-state photopolymerization of α,α′-dicyano-p-benzene diacrylic acid (p-CBA) series has been studied. p-CBA, its esters, amide, and a few other cyano derivatives were prepared and new polymers were obtained from p-CBA alkyl esters on irradiation of ultraviolet or visible light. Though the polymerization behavior differs with each monomer, polymerization proceeds in essentially the same manner as in the 2,5-distyrylpyrazine (DSP) and p-benzenediacrylic acid (BDA) series: the reaction proceeds topochemically forming polymer with a cyclobutane ring in the main chain. Properties of high polymer are typical of cyclobutane-containing polymer. That is, they are highly crystalline with high melting temperature and a limited solubility. The study on this series of compounds, as well as the DSP and p-BDA series, supports the generalization that solid-state dimerization can be extended to solid-state photopolymerization of compound having two dimerizable units in a molecule.  相似文献   

7.
The purpose of this research was to synthesize new regular poly(ester amide)s (PEAs) consisting of nontoxic building blocks like hydrophobic α‐amino acids, α,ω‐diols, and aliphatic dicarboxylic acids, and to examine the effects of the structure of these building block components on some physico‐chemical and biochemical properties of the polymers. PEAs were prepared by solution polycondensation of di‐p‐toluenesulfonic acid salts of bis‐(α‐amino acid) α,ω‐alkylene diesters and di‐p‐nitrophenyl esters of diacids. Optimal conditions of this reaction have been studied. High molecular weight PEAs (Mw = 24,000–167,000) with narrow polydispersity (Mw/Mn = 1.20–1.81) were prepared under the optimal reaction conditions and exhibited excellent film‐forming properties. PEAs obtained are mostly amorphous materials with Tg from 11 to 59°C. α‐Chymotrypsin catalyzed in vitro hydrolysis of these new PEA substrates was studied to assess the effect of the building blocks of these new polymers on their biodegradation properties. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 391–407, 1999  相似文献   

8.
The reaction between 3-methylbenzoxazolinone and some unsaturated acids in PPA leads to mixtures of compounds, depending on the acid: 6-crotonyl- (or cinnamoyl)-3-methylbenzoxazolinones, 2,3-dihydro-2,5-(or 2,7)dioxo-3-methylcyclopenta[f]benzoxazoles and 6-(3-oxo-indanyl)-3-methylbenzoxazolinones. The structure of the products was established by 13C and 1H nmr spectroscopy and (or) by independent synthesis. Possible mechanisms of the reaction are discussed; when competition is possible as in the last step of the cyclization, the benzene ring shows a higher reactivity than the aromatic nucleus of the benzoxazolinone; the contrary is observed when the benzene ring is p-chloro-substituted.  相似文献   

9.
The photopolymerization behavior of p-phenylene diacrylic acid dimethyl ester (p-PDA Me) crystal and the thermal behavior of the resultant poly-p-PDA Me were investigated. From the kinetic study of polymerization at various temperatures a topochemical process via a stepwise mechanism was observed. Continuous change from monomer to polymer crystals was demonstrated by x-ray diffraction pattern and DSC analysis. Crystallinity of the reacting phase was maintained at an extremely high degree during the polymerization process in support of monomer crystal lattice control. Thermal study on as-polymerized poly-p-PDA Me crystal confirmed that the thermal reaction was a polymer crystal lattice-controlled depolymerization, which was followed by miscellaneous processes that involved vaporization, sublimation, and deterioration of the oligomeric or monomeric units of p-PDA Me. Thermal stability was dependent on the molecular weight. All the results are compared with those of four-center-type photopolymerization in the crystalline state.  相似文献   

10.
This study focused on the use of NMR techniques as a tool for the investigation of complex formation between proparacaine and cyclodextrins (CDs) or p‐sulfonic acid calix[6]arene. The pH dependence of the complexation of proparacaine with β‐CD and p‐sulfonic acid calix[6]arene was studied and binding constants were determined by 1H NMR spectroscopy [diffusion‐ordered spectroscopy (DOSY)] for the charged and uncharged forms of the local anesthetic in β‐CD and p‐sulfonic acid calix[6]arene. The stoichiometries of the complexes was determined and rotating frame Overhauser enhancement spectroscopy (ROESY) 1D experiments revealed details of the molecular insertion of proparacaine into the β‐CD and p‐sulfonic acid calix[6]arene cavities. The results unambiguously demonstrate that pH is an important factor for the development of supramolecular architectures based on β‐CD and p‐sulfonic acid calix[6]arene as the host molecules. Such host–guest complexes were investigated in view of their potential use as new therapeutic formulations, designed to increase the bioavailability and/or to decrease the systemic toxicity of proparacaine in anesthesia procedures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

12.
A series of β‐amino esters were synthesized by the reaction of N‐tosyl aldimine or N‐hydroxy aldimine with bromoacetate by sonochemical Reformatsky reaction. The β‐N‐hydroxyamino ester was obtained and the formed sensitive hydroxylamino functionality was resistant under the reaction condition. The β‐lactam also was synthesized by the reaction of Np‐methoxy aldimine as reacting substrate under this sonochemical Reformatsky reaction condition.  相似文献   

13.
The treatment of a β3‐amino acid methyl ester with 2.2 equiv. of lithium diisopropylamide (LDA), followed by reaction with 5 equiv. of N‐fluorobenzenesulfonimide (NFSI) at ?78° for 2.5 h and then 2 h at 0°, gives syn‐fluorination with high diastereoisomeric excess (de). The de and yield in these reactions are somewhat influenced by both the size of the amino acid side chain and the nature of the amine protecting group. In particular, fluorination of N‐Boc‐protected β3‐homophenylalanine, β3‐homoleucine, β3‐homovaline, and β3‐homoalanine methyl esters, 5 and 9 – 11 , respectively, all proceeded with high de (>86% of the syn‐isomer). However, fluorination of N‐Boc‐protected β3‐homophenylglycine methyl ester ( 16 ) occurred with a significantly reduced de. The use of a Cbz or Bz amine‐protecting group (see 3 and 15 ) did not improve the de of fluorination. However, an N‐Ac protecting group (see 17 ) gave a reduced de of 26%. Thus, a large N‐protecting group should be employed in order to maximize selectivity for the syn‐isomer in these fluorination reactions.  相似文献   

14.
Various N-(hydroxyethyl)amino acid esters having a methyl substituent or phenyl group between amine and ester groups have been synthesized and their polycondensation behavior was investigated. These substituted amino acid esters gave amorphous polyamides which were soluble in alcohol. A model reaction between N-(hydroxyethyl)-amine and carboxylic acid ester was carried out in order to elucidate the role of hydroxyethyl group on the polycondensation. It was found that the amidation reaction took place rapidly at room temperature when the alkyl group of the carboxylic acid was small. N-(Hydroxyethyl) polyamides were obtained from N,N′-(bishydroxyethyl)-dicamines and dicarboxylic acid esters. The reaction mechanism of the room-temperature polycondensation reaction is discussed.  相似文献   

15.
2,6‐Dimethyl‐5‐methylene‐1,3‐dioxa‐4‐one (DMDO), a cyclic acrylate possessing acetal–ester linkage, was obtained as a mixture of cis‐ and trans‐isomers (95:5) from Baylis–Hillman reaction of an aryl acrylate. The radical and anionic polymerizations of DMDO yielded the corresponding vinyl polymers without any side reactions such as cleavage of the acetal–ester linkage. The polymerization behaviors were significantly different from that of the acyclic acrylate, α‐(hydroxymethyl)acrylic acid, which was expected inactive against polymerization due to the steric hindrance around the vinylidene group by the α‐substituent. The acetal–ester linkage of the obtained polymer ( P1 ) was completely cleaved via acid hydrolysis to afford a water soluble polymer, P2 . © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 955–961  相似文献   

16.
Peptide-Bond Formation with C-Terminal α,α-Disubstituted α - Amino Acids via Intermediate Oxazol-5(4H)-ones The formation of peptide bonds between dipeptides 4 containing a C-terminalα,α-disubstituted α-amino acid and ethyl p-aminobenzoate ( 5 ) using DCC as coupling reagent proceeds via 4,4-disubstituted oxazol-5(4H)-ones 7 as intermediates (Scheme 3). The reaction yielding tripeptides 6 (Table 2) is catalyzed efficiently by camphor-10-sulfonic acid (Table 1). The main problem of this coupling reaction is the epimerization of the nonterminal amino acid in 4 via a mechanism shown in Scheme 1. CSA catalysis at 0° suppresses completely this troublesome side reaction. For the coupling of Z-Val-Aib-OH ( 11 ) and Fmoc-Pro-Aib-OH ( 14 ) with H-Gly-OBu1 ( 12 ) and H-Ala-Aib-NMe2 ( 15 ), respectively, the best results have been obtained using DCC in the presence of ZnCl2 (Table 3).  相似文献   

17.
Hippuric acid was converted to α-Y-substituted tetramic acids (Y = -CN, -CO2R and -COCH3) according to the following general scheme of reactions: a) preparation of the hippuric acid chloride or of its p-nitrophenyl ester; b) C-acylation of an active methylene compound Y-CH2-CO2R using the acid chloride or the active ester; and c) intramolecular condensation of the C-acylation compound to an α-Y-substituted tetramic acid. The conditions of the C-acylation reaction and the structure and reactivity of the benzoylaminoacetyl derivatives were investigated.  相似文献   

18.
α‐Methyl glutamic acid (L ‐L )‐, (L ‐D )‐, (D ‐L )‐, and (D ‐D )‐γ‐dimers were synthesized from L ‐ and D ‐glutamic acids, and the obtained dimers were subjected to polycondensation with 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride and 1‐hydroxybenzotriazole hydrate as condensation reagents. Poly‐γ‐glutamic acid (γ‐PGA) methyl ester with the number‐average molecular weights of 5000∼20,000 were obtained by polycondensation in N,N‐dimethylformamide in 44∼91% yields. The polycondensation of (L ‐L )‐ and (D ‐D )‐dimers afforded the polymers with much larger |[α]D | compared with the corresponding dimers. The polymer could be transformed into γ‐PGA by alkaline hydrolysis or transesterification into α‐benzyl ester followed by hydrogenation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 732–741, 2001  相似文献   

19.
The methyl ester of isomer A of β-methyltryptophan (2SR,3RS; 2A ) was stereoselectively prepared by an efficient modified method through the reaction of a-methyl-N-(1-Methylethyl)-1H-indole-3-methanamine ( 3 ) with methyl nitroacetate to give the desired nitro compound as a mixture of two racemates 5A , and 5B. During the recrystallization process epimerization occurred and only racemate 5A crystallized out. Catalytic hydrogenation of 5A in the presence of acid stereoselectively yielded the desired amino acid ester 2A. Pictet-Spengler condensation of 2A with aldehydes under aprotic conditions followed by dehydrogenation gave excellent yields of β-carbolines 7a-i , (R = methyl, ethyl, acetyl, phenyl, pyridine-2-yl, furan-2-yl, quinoline-2-yl, styryl, phenethyl). Also β-carbolines 7a,b,i were synthesized by the Pictet-Spengler condensation of (3-meth-yltryptophan under acidic aqueous conditions followed by esterification and dehydrogenation.  相似文献   

20.
The oxidation of glycolic, lactic, malic, and a few substituted mandelic acids by tetraethylammonium chlorochromate (TEACC) in dimethylsulfoxide leads to the formation of corresponding oxoacids. The reaction is first order each in TEACC and hydroxy acids. Reaction is failed to induce the polymerization of acrylonitrile. The oxidation of α‐deuteriomandelic acid shows the presence of a primary kinetic isotope effect (kH/kD = 5.63 at 298 K). The reaction does not exhibit the solvent isotope effect. The reaction is catalyzed by the hydrogen ions. The hydrogen ion dependence has the following form: kobs = a + b[H+]. Oxidation of p‐methylmandelic acid has been studied in 19 different organic solvents. The solvent effect has been analyzed by using Kamlet's and Swain's multiparametric equations. A mechanism involving a hydride ion transfer via a chromate ester is proposed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 50–55, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号