首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quenched ethylene-hexene copolymer was annealed in the temperature range of 86 to 127°C. The morphological changes were monitored by differential scanning calorimetry (DSC) and density. The slow crack growth resistance tested at 80°C was a maximum at an annealing temperature of 113°C and a minimum of 123°C. The lifetimes can be varied by more than a factor of 20 depending on the thermal treatment. The increase in slow crack growth resistance between 86 and 113°C is attributed to an increase in the strength of the crystals by becoming more perfect and to the conversion of loose tie molecules into taut tie molecules. The decrease in strength between 113 and 123°C is attributed to the decrease in tie molecules when a large fraction of the as-quenched crystals begin to melt.  相似文献   

2.
Viscometric properties of two kinds of hydroxypropyl cellulose (HPC) solutions which exhibit liquid-crystalline behavior under certain conditions were determined by using a cone–plate viscometer. Measurements included the temperature and concentration dependences of viscosity. A phenomenological superposition for the viscosity was also tried. The viscosity for the solutions of HPC both in N,N-dimethylacetamide and in dimethylsulfoxide displayed a minimum and a maximum with respect to temperature and the specific viscosities at the minimum and the maximum decreased with increasing concentration. Concentration–temperature superposition for the viscosity of both systems could be applied over a limited concentration range. The physical interpretation is still obscure.  相似文献   

3.
Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested that globular structures similar to Aβ oligomers were generated from amorphous electron-dense materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases, particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of amyloidosis have now become available. Aducanumab, a human monoclonal antibody against the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval. As many other agents for amyloidosis will be developed in the future, studies to develop sensitive clinical scales for identifying improvement and markers that can act as surrogates for clinical scales should be conducted.  相似文献   

4.
The miscibility of copolymers AxB1?x and AyB1?y, derived from the same monomer pair (A, B) but differing in composition, was studied. The systems (A, B) were (S, MMA), (BMA, MMA), (S, BMA), and (CIS, BMA) (S: styrene, CIS: p-chlorostyrene, MMA: methylmethacrylate, BMA: n-butylmethacrylate). Miscibility diagrams were recorded, at low and high temperatures, using cast films and dry films. All blend systems feature hightemperature miscibility gaps. Unusual effects of the compositions x and y on miscibility in blends AxB1?x/AyB1?y were observed. The classical prediction that miscibility should depend only on the composition difference |xy| usually is too simple. It appears necessary to consider dyad interactions.  相似文献   

5.
6.
Abstract

A total of 1104 fish samples from markets of Sicily were analysed for the detection and species identification of Anisakidae nematodes. The preliminary analysis of the fish samples showed the presence of 2459 larvae. All the fish species revealed different prevalence of infestation, with a maximum of 100% for Lepidopus caudatus and a minimum of 4.5% in Sardina pilchardus. The 80% of the larvae examined by PCR-RFLP analysis belonged to Anisakis pegreffii species. The seasonal infestation trend of Anisakis was evaluated in all the fish sample examined. The results of the seasonal infestation trend showed a marked connection with the ecological aspects of the fish species examined. As far as we know, this work report for the first time important ecological aspects of Lepidopus caudatus specimens of South Mediterranean. This work could be useful to plan a seasonal fishing strategy aimed at reducing the health risks related to Anisakis.  相似文献   

7.
To effectively orient the molecular chains of novel syndiotactic poly(vinyl alcohol) (PVA) microfibrillar fiber (PVA fibril), a high‐temperature zone‐drawing method was adopted. The PVA fibrils were directly prepared from the saponification and in situ fibrillation without a spinning procedure. The maximum draw ratio of the PVA fibril increased with a decrease in the syndiotactic diad (r‐diad) content, indicating that the deformability of PVA molecules was lowered in higher syndiotactic PVA. Degree of crystal orientations up to 0.990 were achieved by stretching the PVA fibril with the r‐diad content of 65.1% and the original degree of crystal orientation of 0.902 at 250 °C close to its crystal melting temperature (Tm). When the same draw ratio was applied to the fibrils, a higher crystal orientation was achieved for the fibrils having higher syndiotacticity. Wide‐angle X‐ray data show that the longitudinal crystal sizes of drawn PVA fibrils were larger in higher syndiotacticities. The degree of crystal orientation, crystallinity, Tm, longitudinal crystal size, and tensile strength of the maximum drawn PVA fibril with a r‐diad content of 65.1% were 0.99, 0.97, 279 °C, 187 Å, and 4.66 N/tex, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1263–1271, 2001  相似文献   

8.
We have investigated the rheological properties of the Celanese copolyester with the composition 75 mol% p-hydroxybenzoic acid and 25 mol% 2-hydroxy-6-naphthoic acid (designated as 75HBA/25HNA). Three different samples having inherent viscosities 3.0, 6.0, and 9.2 dL/g were studied. A flow instability is observed at low shear stress which produces an irregularity in the fiber diameter. The surface irregularity becomes less pronounced above a minimum shear stress, indicating that the flow instability originates in the capillary. For these nematic melts, the minimum shear stress marking the onset of more regular flow is found to decrease with increasing temperature and with decreasing inherent viscosity of the copolyester. The die swell ratio of extrudates decreases with increasing shear stress. Fibers were spun from the samples having ηinh = 9.2 and 3.0 dL/g. The initial modulus and tenacity to break for 75HBA/25HNA fibers spun at sufficiently high shear stress to produce smooth filaments are significantly lower than the values we previously reported for fibers of the 58HBA/42HNA copolyester. Moreover, the optimum properties are obtained at relatively low spin-draw ratios. The 75HBA/25HNA polyester also exhibits a yield stress which decreases with increasing temperature. This observation indicates the presence of crystallities at the test temperatures. We believe that the higher content of HBA in the present copolymer gives rise to crystallization of HBA blocks in the thread line and that defects are introduced at higher spin-draw ratios which cause the mechanical properties to become worse.  相似文献   

9.
Production of indole-containing metabolites (“indoles”) from methanol has been studied using a mutant ofHansenula polymorpha resistant to 5-fluorotryptophan. Whereas the wild-type culture produces only a small amount of indoles, the mutant is partially deregulated and overproduces indoles. Indoles production was studied in batch and continuous culture and in a washed-cell system. When the pH was above 4.0, indoles production was growth-associated, in both minimal and complex media, and batch or continuous culture. When the pH was below or equal to 4.0, a low phosphate concentration was found to improve production. In a phosphate-deficient washed-cell suspension system, the addition of an amino acid such as methionine at 5 mM increased specific productivity by more than 60%. Addition of cycloheximide at 50 mg/L decreased residual growth and increased maximum productivity of indoles by more than 60%. When the antibiotic was added at 1000 mg/L, growth was completely inhibited and indoles production continued for about 35 h.  相似文献   

10.
Nucleotide excision repair and the ATR‐mediated DNA damage checkpoint are two critical cellular responses to the genotoxic stress induced by ultraviolet (UV) light and are important for cancer prevention. In vivo genetic data indicate that these global responses are coupled. Aziz Sancar et al. developed an in vitro coupled repair‐checkpoint system to analyze the basic steps of these DNA damage stress responses in a biochemically defined system. The minimum set of factors essential for repair‐checkpoint coupling include damaged DNA, the excision repair factors (XPA, XPC, XPF‐ERCC1, XPG, TFIIH, RPA), the 5′‐3′ exonuclease EXO1, and the damage checkpoint proteins ATR‐ATRIP and TopBP1. This coupled repair‐checkpoint system was used to demonstrate that the ~30 nucleotide single‐stranded DNA (ssDNA) gap generated by nucleotide excision repair is enlarged by EXO1 and bound by RPA to generate the signal that activates ATR.  相似文献   

11.
Various nanocomposite gels were prepared using cellulose nanowhiskers (CNWs) or chitin nanowhiskers (ChNWs) as reinforcing fillers and hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC), or chitosan as network polymers. The use of CNWs with low surface charge induced significant CNWs aggregations, which were well explained by depletion effect. Young's modulus E and swelling ratio Q of CNWs/HPC · CMC gels were highest at zero electrolyte concentration and decreased above 0.01 M electrolyte, whereas stress at break σ of the gels showed its minimum at zero electrolytes and increased with an addition of electrolytes. In the case of ChNWs/chitosan gels, maximum of E and Q was located at 0.01 M electrolyte concentration, and σ did not indicate clear tendency with electrolyte concentration. Although all gels indicated an increase in E and a decrease in Q with an increase in whisker content, the most remarkable changes were observed under an absence of electrolytes, whereas the changes under the presence of electrolytes were somewhat negligible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The evaporation rate of aerosol OT-water-n-heptane inverse micellar systems was studied. The evaporation behavior of solutions was strongly affected when compared with pure heptane. The changes are related to the structure of the micelles and the properties of the water molecules dissolved in the micelles. The initial rate of evaporation reaches a maximum when the surfactant head groups are hydrated with three water molecules, a minimum when the first hydration shell of Na+ ions is completed, and then rises and stabilizes until the second hydration shell is completed. The presence of free water when the ratio water molecules to surfactant molecules exceeds 12 produces a new rise of the initial evaporation rate, which is always higher than that of puren-heptane.  相似文献   

13.
This paper shows that low concentrations of beta-lactoglobulin fibrils can induce depletion-flocculation in beta-lactoglobulin-stabilized oil-in-water emulsions. The minimum required fibril concentration for flocculation was determined experimentally for fibril lengths of about 3 and 0.1 microm. The minimum fibril concentration for flocculation is two orders of magnitude higher for the short fibrils than for the long ones. These experimental results correspond well with a theoretical prediction based on a model of spinodal decomposition. In addition, rheological measurements were performed, verifying that flocculation was induced by a depletion mechanism. The results of this study show that the minimum concentration required for depletion-flocculation can be tuned by varying the length of the fibrils.  相似文献   

14.
Atom transfer radical polymerization (ATRP) has been utilized to synthesize tri‐ and star‐block copolymers of poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) and quaternized poly(2‐(dimethylamino)ethyl methacrylate) (qPDMAEMA). The block copolymers, all with a minimum of two cationically charged blocks, were sequentially used for electrostatic macrocrosslinking of a dilute dispersion of anionic TEMPO‐oxidized cellulose nanofibrils (CNF, 0.3 wt%), forming free‐standing hydrogels. The cationic block copolymers adsorbed irreversibly to the CNF, enabling the formation of ionically crosslinked hydrogels, with a storage modulus of up to 2.9 kPa. The ability of the block copolymers to adsorb to CNF was confirmed by quartz crystal microbalance with dissipation monitoring (QCM‐D) and infrared spectroscopy (FT‐IR), and the thermoresponsive properties of the hydrogels were investigated by rheological stress and frequency sweep, and gravimetric measurements. This method was shown to be promising for the facile production of thermoresponsive hydrogels based on CNF. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3415–3424  相似文献   

15.
Rippling is another mode, in addition to kink-band formation, by which oriented polyethylene can deform and results in a profuse and irregular waviness in the fibrils. For the medium-density and high-density polyethylenes investigated, rippling tended to occur only at strain rates below about 1 min?1 at 25°C. Above this rate, kink bands tended to form. It is suggested that rippling results from easy slip between the fibrils of the oriented polymers and from the resistance of the fibrils to shortening under a compressive stress. The applied shear stress is reduced by the easy slip to a simple compression along the fibrils, and this distorts the fibril into the series of waves that constitutes rippling. Stress–strain measurements confirm that fibril slip is considerably easier under the rates at which rippling occurs than at the rates at which kink bands form.  相似文献   

16.
The strength-limiting process in the fracture of semicrystalline fibers and highly oriented films is the rupture of tie molecules connecting the folded chain lamellae in the machine direction. This view is supported by the data on stress and temperature dependence of lifetime of fibers under load and on radical formation during the fracture experiment. The observed tensile strength, however, is about 10 times smaller and the number of fractured chains between 100 and 1000 times larger than expected on the basis of the known number of tie molecules in the fracture plane. This discrepancy is a consequence of the inhomogeneity of the micromorphology of fiber structure, which causes a much larger stress concentration on the most unfavorably located tie molecules than the average value one would expect in the case of perfectly uniform stress distribution on identical tie molecules. The fluctuation of amorphous layer thickness, of number and length of tie molecules, produces such a high stress concentration on some tie molecules throughout the sample that they rupture long before the average stress concentration is sufficient for chain fracture. By accumulation of damage caused by gradual chain rupture the weakening of the sample locally proceeds so far that at the maximum damage concentration, microcracks start to form, and the fiber breaks.  相似文献   

17.
Amyloidosis is a group of diseases that includes Alzheimer’s disease, prion diseases, transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of cells near amyloid fibrils attributable to an affinity of components constituting these membranes to those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic strategies based on pathophysiology of amyloidosis consist of the following: (1) reducing or preventing the production of causative proteins; (2) preventing the causative proteins from participating in the process of amyloid fibril formation; and/or (3) eliminating already-deposited amyloid fibrils. As the development of novel disease-modifying therapies such as short interfering RNA, antisense oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection of treatment is becoming more and more important for patients with amyloidosis.  相似文献   

18.
We develop a theoretical model of cooperative hydration to clarify the molecular origin of the observed nonlinear depression of the lower critical solution temperature (LCST) in the aqueous solutions of thermosensitive random copolymers and find the monomer composition at which LCST shows a minimum. Phase diagrams of poly(N-isopropylacrylamide-co-N,N-diethylacrylamide) copolymer solutions are theoretically derived on the basis of the theory of cooperative hydration by introducing the microscopic structure parameter η which characterizes the distribution of the monomer sequences along the chains. We compared them with the experimental data of LCST of random copolymers with various monomer compositions and also of the diblock copolymers with equimolar monomer composition. The transition temperature shifts to lower than those of homopolymer counterparts when the monomer sequence of the chains has an alternative tendency. On the contrary, for the blocky polymers such as diblock copolymers, the transition temperature remains almost the same as those of the homopolymers. Thus, the nonlinear effect in phase separation appears when the average block length of the copolymers is shorter than the average sequence length of the cooperative hydration. The degree of hydration is calculated as a function of the temperature and polymer concentration for varied distribution of the copolymer compositions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1112–1123  相似文献   

19.
A series of diblock‐copolymers were synthesized through anionic polymerization of styrene and tert‐butyl methacrylate (tBuA) with different monomer ratios, and analogous block‐copolymeric derivatives (PS‐b‐PAA)s with monofunctional carboxylic acid groups were obtained by further hydrolyzation as hydrogen‐bonded (H‐bonded) proton donors. Via H‐bonded interaction, these diblock‐coplymeric donors (PS‐b‐PAA)s were incorporated with luminescent mono‐pyridyl/bis‐pyridyl acceptors to form single/double H‐bonded supramolecules, that is, H‐bonded side‐chain/cross‐linking copolymers, respectively. The supramolecular architectures formed by donor polymers and light‐emitting acceptors were influenced by the ratio of acid blocks in the diblock copolymeric donors and the type of single/double H‐bonded light‐emitting acceptors. Their thermal and luminescent properties can be adjusted by H‐bonds, and more than 100 nm of red‐shifted photoluminescence (PL) emissions were observed, which depend on the degrees of the H‐bonding interactions. Self‐assembled phenomena of amphiphilic dibolck copolymers and their H‐bonded complexes were confirmed by TEM micrographs, and supramolecular microphase separation of spherical micelle‐like morphology was demonstrated to affect the photophysical properties. Polymer light‐emitting diode (PLED) devices containing H‐bonded complexes showed electroluminescence (EL) emissions of 503–560 nm under turn‐on voltages of 7.5–9.0 V, maximum power efficiencies of 0.23–0.37 cd/A (at 100 mA/cm2), and maximum luminances of 318–519 cd/m2 (around 25 V). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4685–4702, 2009  相似文献   

20.
Small-angle scattering of synchrotron x-ray radiation has been used to study the effects of fatigue on craze fibril microstructure. The results obtained during unloading and reloading during a single cycle have been compared with those predicted by a model of sinusoidally bent fibrils. In addition the total displacement of the craze boundaries was found from the change in the invariant on unloading. The mean fibril diameter D was measured at the maximum tensile strain in each cycle. Over 250 cycles, D increased by at least a factor of 2 from an initial value of 6.5 nm, with most of this change happening in the first few cycles. The increase in D must occur by fibril coalescence, a mechanism that requires that the material in craze fibrils have considerable molecular mobility, even at room temperature, 70°C below the glass transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号