首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Manganese oxides are considered to be very promising materials for water oxidation catalysis (WOC), but the structural parameters influencing their catalytic activity have so far not been clearly identified. For this study, a dozen manganese oxides (MnOx) with various solid‐state structures were synthesised and carefully characterised by various physical and chemical methods. WOC by the different MnOx was then investigated with Ce4+ as chemical oxidant. Oxides with layered structures (birnessites) and those containing large tunnels (todorokites) clearly gave the best results with reaction rates exceeding 1250 ${{\rm{mmol}}_{{\rm{O}}_{\rm{2}} } }$ ${{\rm{mol}}_{{\rm{Mn}}}^{ - 1} }$ h?1 or about 50 μmolO2 m?2 h?1. In comparison, catalytic rates per mole of Mn of oxides characterised by well‐defined 3D networks were rather low (e.g., ca. 90 ${{\rm{mmol}}_{{\rm{O}}_{\rm{2}} } }$ ${{\rm{mol}}_{{\rm{Mn}}}^{ - 1} }$ h?1 for bixbyite, Mn2O3), but impressive if normalised per unit surface area (>100 ${{\rm{{\rm \mu} mol}}_{{\rm{O}}_{\rm{2}} } }$ m?2 h?1 for marokite, CaMn2O4). Thus, two groups of MnOx emerge from this screening as hot candidates for manganese‐based WOC materials: 1) amorphous oxides with tunnelled structures and the well‐established layered oxides; 2) crystalline MnIII oxides. However, synthetic methods to increase surface areas must be developed for the latter to obtain good catalysis rates per mole of Mn or per unit catalyst mass.  相似文献   

2.
A New Method for Measuring Field-dependent Susceptibilities with the Faraday Method, Applied on Palladium Mordenite A simple method to calculate the mean value of an inhomogeneous magnetic field is described, which is needed for susceptibility measurements with a Faraday balance. By combination of the magnetic behaviour of paramagnetic and saturated ferromagnetic calibrating samples we get the magnetic field H = \documentclass{article}\pagestyle{empty}\begin{document}${\rm H} = \frac{{{\rm \sigma}_\infty .{\rm m}_{\rm f}}}{{\chi _{{\rm ges}} \cdot {\rm m}_{{\rm ges}} - \chi _{\rm p}\cdot m_{\rm p}}} $\end{document} $\end{document} (s? specific saturation magnetization, m mass, χ susceptibility). A Pd-mordenite sample is discussed as an example of a diamagnetic substance with a superparamagnetic impurity. Because the impurity is not magnetically saturated we must take into account the Langevin function. We calculated the diamagnetic susceptibility χdia = ?0.411 · 10?6 cm3/g.  相似文献   

3.
The photooxidation of acrylonitrile, methacylonitrile, and allylcyanide in the presence of NO was studied in parts per million concentration using the long-path Fourier transform IR spectroscopic method. The stoichiometry of the OH radical initiated oxidation of methacrylonitrile was established as \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm C}\left( {{\rm CH}_{\rm 3} } \right){\rm CN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{1.0} {\rm HCHO + CH}_{\rm 3} {\rm COCN + 2NO}_{{\rm 2}} + \left( {{\rm OH}} \right) $\end{document}. The yield of HCHO for acrylonitrile and allylcyanide was found to be ca. 100 and 80%, and the stoichiometric reactions were assessed to proceed, \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm CHCN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{1.0} {\rm HCHO + HCOCN + 2NO}_{\rm 2} + \left( {{\rm OH}} \right) $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ \left( {{\rm OH}} \right) + {\rm CH}_{\rm 2} = {\rm CHCH}_{\rm 2} {\rm CN + 2NO + 2O}_{\rm 2} \mathop {\hbox to 20pt{\rightarrowfill}}\limits^{0.8} {\rm HCHO + HCOCH}{\rm 2} {\rm CN + 2NO}_{\rm 2} + \left( {{\rm OH}} \right) $\end{document}, respectively. These results revealed that the reaction mechanism for these unsaturated organic cyanides are analogous to that of olefins.  相似文献   

4.
Conduction band electrons produced by band gap excitation of TiO2-particles reduce efficiently thiosulfate to sulfide and sulfite. \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm 2e}_{{\rm cb}}^ - ({\rm TiO}_{\rm 2}) + {\rm S}_{\rm 2} {\rm O}_3^{2 - } \longrightarrow {\rm S}^{2 - } + {\rm SO}_3^{2 - } $\end{document} This reaction is confirmed by electrochemical investigations with polycrystalline TiO2-electrodes. The valence band process in alkaline TiO2-dispersions involves oxidation of S2O to tetrathionate which quantitatively dismutates into sulfite and thiosulfate, the net reaction being: \documentclass{article}\pagestyle{empty}\begin{document}$ 2{\rm h}^{\rm + } ({\rm TiO}_{\rm 2}) + 0.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } + 1.5{\rm H}_{\rm 2} {\rm O} \longrightarrow {\rm SO}_3^{2 - } + 3{\rm H}^{\rm + } $\end{document} This photodriven disproportionation of thiosulfate into sulfide and sulfite: \documentclass{article}\pagestyle{empty}\begin{document}$ 1.5{\rm H}_{\rm 2} {\rm O } + 1.5{\rm S}_{\rm 2} {\rm O}_{\rm 3}^{{\rm 2} - } \mathop \to \limits^{h\nu} 2{\rm SO}_3^{2 - } + {\rm S}^{{\rm 2} - } + 3{\rm H}^{\rm + } $\end{document} should be of great interest for systems that photochemically split hydrogen sulfide into hydrogen and sulfur.  相似文献   

5.
The analysis of the luminescence spectra of the pyridinium hexahalogeno complexes of europium(III) (PyH)3EuCl6 and (PyH)3EuBr6 is in accordance with the presence of a weakly distorted octahedral symmetry at the rare earth site. The parameters calculated from the splitting of the 7F2-level, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm B}_{{\rm 40}} {\rm (EuCl}_{\rm 6} {\rm - - -) = 159 \pm 4 und B}_{{\rm 40}} {\rm (EuBr}_{\rm 6} {\rm - - -) = 152 \pm 4 cm}^{- {\rm 1}} {\rm,} $\end{document} are about four to five times larger than the parameters calculated theoretically from the electrostatic point-charge model.  相似文献   

6.
The reactions of metastable $ {\rm CH}_{\rm 2} = {\rm CHCH =}\mathop {{\rm OCH}_{\rm 3}}\limits^{\rm +} $ oxonium ions generated by alkyl radical loss from ionized allylic alkenyl methyl ethers are reported and discussed. Three main reactions occur, corresponding to expulsion of H2O, C2H4/CO and CH2O. There is also a very minor amount of C3H6 elimination. The mechanisms of these processes have been probed by 2H- and 13C-labelling experiments. Special attention is given to the influence of isotope effects on the kinetic energy release accompanying loss of formaldehyde from 2H-labelled analogues of $ {\rm CH}_{\rm 2} = {\rm CHCH =}\mathop {{\rm OCH}_{\rm 3}}\limits^{\rm + } $. Suggestions for interpreting these reactions in terms of routes involving ion–neutral complexes are put forward.  相似文献   

7.
The γ-distonic radical ions R$ \mathop {\rm O}\limits^ + $CHR′CH2?HR″ and their molecular ion counterparts R$ \mathop {\rm O}\limits^{{\rm + } \cdot } $CHR′CH2CH2R″ have been studied by isotopic labelling and collision-induced dissociation, applying a potential to the collision cell in order to separate activated from spontaneous decompositions. The stability of CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, C2H5$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?HCH3, CH3$ \mathop {\rm O}\limits^ + $HCH(CH3)CH2?H2, CH3$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3 and C2H5$ \mathop {\rm O}\limits^ + $HCH2CH2?HCH3, has been demonstrated and their characteristic decomposition, alcohol loss, identified. For all these γ-distonic ions, the 1,4-H abstraction leading to their molecular ion counterpart exhibits a primary isotope effect.  相似文献   

8.
The [C4H8O] ion in the mass spectrum of 1-hepten-3-ol is shown to be \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} {\rm{CH}}_{\rm{2}} {\rm{C(= }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H}})\mathop {\rm{C}}\limits^{\rm{.}} {\rm{H}}_{\rm{2}} $\end{document} by collisional activation spectra, appearance energies and comparison of the ratios of the intensities of metastable decompositions. [C4H8O] appears to be formed by rearrangement of ionized 1-hepten-3-ol to \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{.}} {\rm{HC(= }}\mathop {\rm{O}}\limits^{\rm{ + }} {\rm{H)CH}}_{\rm{2}} {\rm{CH}}_{\rm{2}} {\rm{CH}}_{\rm{2}} {\rm{CH}}_{\rm{3}} $\end{document} followed by γ-hydrogen rearrangement-β-cleavage.  相似文献   

9.
The kinetics of solvolysis of the title compound (QAc) in undried DMSO-d6 to give 4-(1-ethoxycarbonyl-1-cyano)methylquinoline (QH) and HOAc at ambient temperature were investigated by 1H nmr spectrometry. With a limited excess of water the solvolysis follows a three-step process of $ {\rm QAc} + {\rm H}_2 {\rm O}\mathop \to \limits^{k_1} {\rm QH} + {\rm HOAc}, $ , and $ {\rm Ac}_{\rm 2} {\rm O} + {\rm H}_2 {\rm O}\mathop \to \limits^{k_3} {\rm 2\,HOAc}, $ where k2 > k1 and k3 < k1. Addition of pyridine-d5 to the reaction mixture markedly catalyzes the overall solvolysis, while addition of CF3CO2D to the reaction mixture simplifies the kinetics to pseudo first-order in [QAc] with k = 4.3 × 10?3 min?1.  相似文献   

10.
Ab initio molecular orbital calculations with split-valence plus polarization basis sets and incorporating electron correlation and zero-point energy corrections have been used to examine possible equilibrium structures on the [C2H7N]+˙ surface. In addition to the radical cations of ethylamine and dimethylamine, three other isomers were found which have comparable energy, but which have no stable neutral counterparts. These are \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3} $\end{document}and\documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm }, $\end{document} with calculated energies relative to the ethylamine radical cation of ?33, ?28 and 4 kJ mol?1, respectively. Substantial barriers for rearrangement among the various isomers and significant binding energies with respect to possible fragmentation products are found. The predictions for \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_{\rm 2} {\rm CH}_{\rm 2} \mathop {\rm N}\limits^ + {\rm H}_{\rm 3} $\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm .} {\rm H}\mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 3}$\end{document} are consistent with their recent observation in the gas phase. The remaining isomer, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm N}\limits^{\rm + } {\rm H}_{\rm 2} \mathop {\rm C}\limits^{\rm .} {\rm H}_{\rm 2} {\rm },$\end{document}is also predicted to be experimentally observable.  相似文献   

11.
Evidence is presented for the gas phase generation of at least eight stable isomeric [C2H7O2]+ ions. These include energy-rich protonated peroxides (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_2 {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (e), \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm (H)OH} $\end{document} (f) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm O}\mathop {\rm O}\limits^{\rm + } {\rm (H)CH}_{\rm 3} {\rm (g)),} $\end{document} (g)), proton-bound dimers (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm 3} \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} (h) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH2 = O} \cdot \cdot \cdot \mathop {\rm H}\limits^{\rm + } \cdot \cdot \cdot {\rm HOCH}_{\rm 3} $\end{document} (i)) and hydroxy-protonated species (ions \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} {\rm (OH)CH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} (a), $\end{document} \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm CH(OH)}\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (b) and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} {\rm OCH}_{\rm 2} \mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2} $\end{document} (c)). The important points of the present study are (i) that these ions are prevented by high barriers from facile interconversion and (ii) that both electron-impact- and proton-induced gas phase decompositions seem to proceed via multistep reactions, some of which eventually result in the formation of proton-bound dimers.  相似文献   

12.
The charge stripping mass spectra of [C2H5O]+ ions permit the clear identification of four distinct species: \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - {\rm O - }\mathop {\rm C}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 3} - \mathop {\rm C}\limits^{\rm + } {\rm H - OH}$\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}${\rm CH}_{\rm 2} = {\rm CH - }\mathop {\rm O}\limits^{\rm + } {\rm H}_{\rm 2}$\end{document}. The latter, the vinyloxonium ion, has not been identified before. It is generated from ionized n-butanol and 1,3-propanediol. Its heat of formation is estimated to be 623±12 kJ mol?1. The charge stripping method is more sensitive to these ion structures than conventional collisional activation, which focuses attention on singly charged fragment ions.  相似文献   

13.
From a combination of isotopic substitution, time-resolved measurements and sequential collision experiments, it was proposed that whereas ionized methyl acetate prior to fragmentation rearranges largely into \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 \mathop {\rm C}\limits^ + ({\rm OH}){\rm O}\mathop {\rm C}\limits^{\rm .} {\rm H}_2 $\end{document}, in contrast, methyl propanoate molecular ions isomerize into \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm C}\limits^. {\rm H}_2 {\rm CH}_2 \mathop {\rm C}\limits^ + ({\rm OH}){\rm OCH}_3 $\end{document}. Metastably fragmenting methyl acetate molecular ions are known predominantly to form H2?OH together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}, whereas ionized methyl propanoate largely yields H3CO˙ together with \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_3 {\rm CH}_2 - \mathop {\rm C}\limits^ + = {\rm O} $\end{document}. The observations were explained in terms of the participation of different distonic molecular ions. The enol form of ionized methyl acetate generates substantially more H3CO˙ in admixture with H2?OH than the keto tautomer. This is ascribed to the rearrangement of the enol ion to the keto form being partially rate determining, which results in a wider range of internal energies among metastably fragmenting enol ions. Extensive ab initio calculations at a high level of theory would be required to establish detailed reaction mechanisms.  相似文献   

14.
The problem of assigning structures to [C2H3O]+ ions produced from a wide variety of precursor molecules has been readdressed. The identification of the acetyl cation, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{3}} \mathop {\rm{C}}\limits^{\rm{ + }} = {\rm{O}} $\end{document}, from metastable peak characteristics and collisional activation mass spectra appears to be straightforward. The structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{CH}}_{\rm{2}} = \mathop {\rm{C}}\limits^{\rm{ + }} - {\rm{OH}} $\end{document} is also known to exist as a stable ion. A third ion, whose structure may be represented as \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm{C}}\limits^{\rm{ + }} {\rm{H}}_{\rm{2}} {\rm{CHO}} $\end{document} or has also been characterized.  相似文献   

15.
The rate constants for the protonation of “free” (that is, solvated) superoxide ions by water and ethanol are equal to 0.5–3.5 ×10?3M?1·s?1 in DMF and AN at 20º. It has been found that the protonation rates for the ion pairs of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} with the Bu4N+ cation are much slower than those for “free” \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document}. It is suggested that the effects of aprotic solvents on the protonation rates of \documentclass{article}\pagestyle{empty}\begin{document}${\rm O}_{\rm 2}^{\overline {\rm .} }$\end{document} are mainly due to the fact that the proton donors form solvated complexes of different stability in these solvents.  相似文献   

16.
Using a specially designed column system, we have systematically investigated the effect of mobile phase velocity on column efficiency. The performance of small bore columns operated at different linear velocities of mobile phase was examined for three different types of injection system. Using the value of H/u or n/t r º as a criterion of a high speed separation, we calculated values of n/t r º for different solutes according to the equation \documentclass{article}\pagestyle{empty}\begin{document}$ {{\rm n}\mathord{\left/ {\vphantom {{\rm n} {{\rm t}_{\rm r}^ \circ }}}\right. \kern-\nulldelimiterspace} {{\rm t}_{\rm r}^ \circ }} = {{{\rm n}^\infty } \mathord{\left/ {\vphantom {{{\rm n}^\infty } {{\rm t}_{\rm r}^ \circ }}} \right. \kern-\nulldelimiterspace} {{\rm t}_{\rm r}^ \circ }}\left({\frac{{1 + {\rm k'}}}{{{\rm k' + }\beta }}} \right)^2 $\end{document}; the results obtained are in agreement with the experimentally determined values. These systematic investigations culminated in the separation of seven compounds in less than 10 s; the respective chromatogram is shown.  相似文献   

17.
The reaction SO + SO →l S + SO2(2) was studied in the gas phase by using methyl thiirane as a titrant for sulfur atoms. By monitoring the C3H6 produced in the reaction \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm S} + {\rm CH}_3\hbox{---} \overline {{\rm CH\hbox{---}CH}_2\hbox{---} {\rm S}} \to {\rm S}_2 + {\rm C}_3 {\rm H}_6 (7) $\end{document}, we determined that k2 ? 3.5 × 10?15 cm3/s at 298 K.  相似文献   

18.
A chain mechanism is proposed to account for the very rapid termination reactions observed between alkyl peroxy radicals containing α-C—H bonds which are from 104 to 106 faster than the termination of tertiary alkyl peroxy radicals. The new mechanism is with termination by . \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R}\overline {{\rm CHOO}} $\end{document} is the zwitterion originally postulated by Criegee to account for the chemistry of O3-olefin addition. Heats of formation are estimated for \documentclass{article}\pagestyle{empty}\begin{document}$ \overline {{\rm CH}_2 {\rm OO,}} {\rm }\overline {{\rm RCHOO}} $\end{document}, and \documentclass{article}\pagestyle{empty}\begin{document}$ ({\rm C}\overline {{\rm H}_3 )_2 {\rm COO}} $\end{document} and it is shown that all steps in the mechanism are exothermic. The second step can account for (1Δ)O2 which has been observed. k1 is estimated to be 109–2/θ liter/M sec where θ = 2.303RT in kcal/mole. The second and third steps constitute a chain termination process where chain length is estimated at from 2 to 10. This mechanism for the first time accounts for minor products such as acid and ROOH found in termination reactions. Trioxide (step 3) is shown to be important below 30°C or in very short time observations (<10 s at 30°C). Solvent effects are also shown to be compatible with the new mechanism.  相似文献   

19.
Based on Buckingham and Pople’s theory of magnetic double refraction, a theoretical expression is derived for a new Cotton–Mouton effect ${\phi _{{\rm{C}} - {\rm{M}}}^{(IB)} }$ in liquid induced by the crossed effect between the high dc magnetic field B0 and the nuclear magnetic moment ${m_z^{(I)} }$ . It contains temperature‐independent and ‐dependent parts. The latter is proportional to the product between anisotropy of polarizability and the nuclear magnetic shielding tensor. For this new effect ${\phi _{{\rm{C}} - {\rm{M}}}^{(IB)} }$ , its order in magnitude for a molecule with large polarizability anisotropy is estimated to be comparable to the nuclear‐spin‐induced optical Faraday rotation (NSOFR). In the multipass approach, ${\phi _{{\rm{C}} - {\rm{M}}}^{(IB)} }$ can be eliminated by time‐reversal symmetry arguments, but NSOFR is enhanced.  相似文献   

20.
Polymerization of the cyclic amide of PIII is described for the first time. The N,N-diethylamine-1,3,2-dioxaphosphorinan was shown to give living reversible polymerization with anionic initiators. Lithium and sodium derivatives were found to be inactive. 1H-, 13C-, and 31P-NMR indicated that the polymer strictly reflects the monomer structure and is formed without any isomerization, the polymer chain being $\rlap{--} ({\rm OP}\left( {{\rm NR}_{\rm 2} } \right){\rm O(CH}_{\rm 2} \rlap{--} )_3 )_n $. Initiation involves attack of the anion on the P atom. From the dependence of the equilibrium monomer concentration on temeprature ΔH1s = 1.5 ± 0.2 kcal·mol?1 and ΔS1s = 4.6 ± 0.6 cal·mol?1·°K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号