首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We report the dielectric relaxation behaviour in the antiferroelectric SmCA* and ferrielectric SmCγ* phases of the antiferroelectric liquid crystal 4-[5-(4-octloxyphenyl)-2-pyrimidinyl]phenyl 4,4,4-trifluoro-3-(methoxyphenyl)butanoate which shows an antiferroelectric transition at around 88±0.1°C. In the SmCA* phase, two dielectric relaxation modes have been found, namely the usual antiferroelectric Goldstone mode and another arising from molecular rotation around its short axis. In the SmCγ* phase, one dielectric relaxation mode has been observed due to the ferrielectric Goldstone mode. Dielectric increments and relaxation frequencies of the antiferroelectric and ferrielectric phases are estimated from the fits of the Cole–Cole function of the dielectric spectrum. The dependence of the bias field in the ferrielectric phase is also discussed.  相似文献   

2.
The fluorinated compound, (S)-4′′-(6-perfluoropentanoyoxyhexyl-1-oxy)-2′,3′-difluoro-4-(1-methylheptyloxycarbonyl)-[1,1′:4′,1′′]-terphenyl, which exhibits antiferroelectric SmCA*, ferroelectric SmC* and paraelectric SmA* phases, has been investigated by polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and frequency-dependent dielectric spectroscopy methods. X-ray studies have revealed that the layer thickness remains almost constant in the SmA* phase but within the SmC* and SmCA* phases it decreases with decreasing temperature, a step jump being observed only at the SmA*–SmC* transition. The tilt angle in the SmCA* phase decreases from 22.2° to 19.5°, and in the SmC* phase it decreases from 18.8° to 5.5°. Spontaneous polarisation is found to be quite high and varies between 74.1 and 118.7 nC cm?2. The variation in ε′ and ε′′ with temperature shows a discontinuous change at the transition temperatures. Goldstone mode relaxation is only observed in the ferroelectric and antiferroelectric phases and is found to be of the Cole–Cole type. The soft mode is observed on application of a bias field near the SmC*–SmA* transition. Neither the soft mode nor the anti-phase azimuthal angle fluctuation mode is observed in SmCA*. Rotational viscosity decreases quite rapidly with temperature but in a different manner in the ferroelectric and antiferroelectric phases. Activation energy for this process is found to be 48.14 kJ mol?1 in the SmC* phase.  相似文献   

3.
Switching and dielectric relaxation phenomena were investigated for an antiferroelectric liquid crystal, 4,4‐(1‐methyloctyloxycarbonyl)phenyl]‐4′‐[3‐(butanoyloxy)prop‐1‐oxy]biphenyl carboxylate, exhibiting chiral smectic A (SmA*), smectic C (SmC*) and antiferroelectric (SmCA*) phases. Spontaneous polarisations, rotational viscosities, relaxation frequencies, dielectric strengths and distribution parameters were determined as a function of temperature. The electric field required for saturation of the spontaneous polarisation increased with a decrease in temperature. In the SmA* phase, only one relaxation mechanism was observed that behaves as soft mode. Two relaxation processes were detected in the SmC* phase. A high‐frequency relaxation process invariant at 2.2 kHz was due to a Goldstone mode, but the origin of low‐frequency relaxation process (1–20 Hz) is unclear; however, it may belong to an X‐mode. The dielectric spectrum of the SmCA* phase exhibits two absorption peaks separated by two decades of frequency. The low‐frequency peak is related to the antiferroelectric Goldstone mode, whereas the high‐frequency peak originates from the anti‐phase fluctuation of the directors in the anti‐tilt pairs of the SmCA* phase.  相似文献   

4.
Four series of new [1]benzothieno[3,2- b][1]benzothiophene derivatives have been synthesized. In the non-chiral series a SmA phase occurs, while the chiral series exhibits a rather wide antiferroelectric SmCA* phase just below the SmA phase. The SmA-SmCA* phase transition has been studied using DSC and dielectric spectroscopy. In the SmCA* phase the spontaneous quantities have been measured. The tilt angle shows a typical temperature dependence and the values of spontaneous polarization are rather moderate. The length of the helical pitch increases on increasing the length of the non-chiral alkyl chain.  相似文献   

5.
Dielectric measurements have been carried out on the chiral smectic Cα (SmCα*) phase of a MHPOBC analogous compound. Two relaxation modes have been observed in this phase for planar orientation of the molecules. One process has been observed at frequency lower than that of the soft mode of the chiral smectic A (SmA*) phase. This relaxation process is connected with the helicity of the SmCα* phase. In the high‐frequency region, another relaxation process has been observed in the SmCα* phase for which bias field dependence is similar to that of the soft mode at the SmA*–SmC* phase transition. The experimental observations are in agreement with a recently proposed dielectric theory for the SmCα* phase and theoretical dielectric results obtained by numerical simulations. Thus, we report here experimental verification of two theoretically predicted dielectric modes in the SmCα* phase.  相似文献   

6.
New compound showing a direct SmA*–SmCA* phase transition was synthesised. As far as authors know there are a few pure compounds showing para- and antiferroelectric phases without SmC* between them. Direct current (DC) field applied into a planar-oriented cell induces ferroelectric SmC* phase in an investigated compound. Typical for SmC*, Goldstone mode starts to be detectable. DC field also shifts down the temperature of a SmCA* phase creation. Moreover, modes in the appearing antiferroelectic phase are enhanced by DC field. This paper shows and discusses relations between modes detected in SmA*, SmCA* and SmC* (SmC* phase – nucleated by DC field) phases. Parameters of observed modes are calculated using the Cole–Cole relaxation model and a calculation procedure useful especially for high frequency relaxations (higher than 200 kHz).  相似文献   

7.
Complex dielectric spectroscopy (frequency range 5 Hz–13 MHz) has been used to analyse the frequency, temperature and bias‐field dependences of the molecular dynamics of a very high‐spontaneous‐polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature‐dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X‐mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*–SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*–SmA phase transition was revealed.  相似文献   

8.
Thermodynamic, dielectric, optical and switching parameters of a single-phase antiferroelectric (AF) liquid crystalline material (S)-(+)-4-(1-methylheptyloxycarbonyl)-2,3-difluorophenyl 4′-[3-(2,2,3,3,4,4,4-heptafluorobutoxy)prop-1-oxy]biphenyl-4-carboxylate have been studied. These studies show wide temperature range (~97.8°C–25.3°C) of AF SmC*A phase in the material. The dielectric studies have been carried out in the frequency range of 1 Hz–35 MHz under planar anchoring conditions of the molecules. The dielectric spectrum of the SmC*A phase exhibits three relaxation modes due to the collective as well as individual molecular processes. Relaxation frequencies of these modes lie in the range of kHz–MHz regions. Relative permittivity of the material (at 10 kHz) varies from ~8.8 at 98.8°C to 9.9 at 41.0°C. Maximum tilt of the molecule in the SmC*A phase is ~43°C. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ~439 nC/cm2 and switching time is the order of 1–5 millisecond, whereas viscosity is moderate.  相似文献   

9.
The temperature‐ and electric field‐dependent dielectric relaxation and polarisation of a new chiral swallow tailed antiferroelectric liquid crystal, i.e. 1‐ethylpropyl (S)‐2‐{6‐[4‐(4′‐decyloxyphenyl)benzoyloxy]‐2‐naphthyl}propionate (abbreviated as EP10PBNP), were investigated. The electric field‐induced dielectric loss spectra of EP10PBNP revealed electroclinic and anomalous dielectric behaviour in the chiral smectic A (SmA*)–chiral antiferroelectric smectic C (SmCA*) pre‐transitional regime. From an analysis of thermal hysteresis of the dielectric constant, electric field‐induced polarisation and dielectric loss spectra, the appearance of a ferrielectric‐like mesophase is observed followed by an unstable SmCA* phase in the SmA*–SmCA* pre‐transitional regime.  相似文献   

10.
In a large class of smectic mixtures prepared at our University, the phase transition between chiral ferroelectric smectic C (SmC*) and chiral antiferroelectric smectic C (SmCA*) phases can be observed on cooling. Under bias field the temperature of the phase transition SmC*?SmCA* decreases (ca. 100°C in the investigated mixture). The transition is called: unwound SmC*?twisted SmCA* phase transition. The Goldstone mode in SmC* phase is reduced by a direct current field while two modes (PH and PL) in the SmCA* phase are amplified. The amplitude of the fast X mode observed in the SmCA* phase is reduced. The aim of this paper is to show how parameters of the modes in SmCA* phase (calculated from Cole–Cole model) change with bias voltage—when twisted structure in SmCA* phase is gradually unwound. The character of the modes observed in SmCA* is discussed. A new effect is shown: a high value of dielectric loss is detected in the unwound SmC* phase, which is very close to SmCA*.  相似文献   

11.
The electro-optic and complex dielectric behaviour of an antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl)phenyl 4′-(n-butanoyloxyprop-1-oxy)biphenyl-4-carboxylate, having chiral SmCA* and hexatic smectic phases, have been investigated. Complex dielectric permittivities were measured as a function of frequency, d.c. bias field and temperature. Spontaneous polarization was measured by the current reversal technique; tilt angle was measured under a polarizing microscope using a low frequency electric field. The electro-optic properties and dielectric behaviour of the material are compared with results obtained by DSC and polarizing optical microscopy. Dielectric relaxation processes in SmCA* and hexatic smectic phases were determined. The dielectric strength at the SmCA* to hexatic smectic phase transition is discussed in terms of coupling between the long range bond orientational order and smectic C director. It seems from the results of spontaneous polarization and dielectric relaxation spectroscopy that the material might possess an additional phase between the SmCA* and hexatic smectic I* phases.  相似文献   

12.
《Liquid crystals》1997,23(2):275-283
The complex dielectric permittivity has been measured for a ferroelectric liquid crystal in the range 102-109Hz. Six different relaxations have been obtained and characterized: soft mode (SmA* and SmC* phases), Goldstone mode (SmC* phase), rotation around molecular long axis, rotation around molecular short axis, ferroelectric domain mode (SmC* phase) and an internal motion associated with a polar group. Strengths and frequencies of these modes have been obtained for the different phases for different bias fields. Using these results together with spontaneous polarization and molecular tilt measurements we have also obtained the rotational viscosities associated with the soft mode and the Goldstone mode. We explain the results in the light of the so-called Landau extended model, concluding that the biquadratic coupling between polarization and tilt is quite important with regard to the bilinear coupling. This fact has been used to explain the noticeable increase of the activation energy of the frequency of the mode related to the rotation around the molecular long axis at the SmA*-SmC* phase transition.  相似文献   

13.
Frequency- and temperature-dependent dielectric and switching parameters of a room temperature tri-component antiferroelectric liquid crystal mixture W-287 have been determined. Dielectric, optical texture and thermodynamic studies show wide room temperature range antiferroelectric SmC*a (?91.1°C to <–25°C) phase in addition to high temperature paraelectric SmA* (?2.6°C) and ferroelectric SmC* (?4.4°C) phases. The dielectric studies carried out in the frequency range of 1–35 MHz under planar anchoring condition of the molecules show five different relaxation modes appearing in the SmA*, SmC* and SmC*a phases. Using Curie–Weiss law fit, ferroelectric SmC* to paraelectric SmA* transition temperature has been found to be 91.8°C. The dielectric response of SmC*a phase exhibits unusually three relaxation modes due to collective as well as individual molecular processes in addition to phason mode in the SmC* phase and amplitudon mode in the SmA* phase. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ?300 nC/cm2, whereas viscosity is moderate. Switching time is of the order of few milli seconds.  相似文献   

14.
In a liquid crystalline side chain polyacrylate containing one center of chirality in the terminal alkyl chain of the mesogenic part, switching times of 200–400 μs were measured in the SmC* phase. Below this phase an unidentified phase exists, which shows electroclinic-like switching. The phase transition between those two phases can be shifted by applying an electric field. At higher molecular weights three subphases emerge in the SmC* region. Variation of the spacer length revealed, for the first time, ferroelectric switching even at a spacer length of only two CH2 groups. By shifting the centre of chirality into the spacer of the side group a polymer resulted, which shows electroclinic switching in the SmC* phase, changing to ferroelectric switching when the voltage is increased. Incorporation of an oxirane ring as chiral building block into the spacer yielded a polymer that shows a sign inversion of the spontaneous polarization in the SmC* phase. A polymer containing a dioxolane carbonic ester as chiral unit exhibits three switching states, with the third state existing at a low or zero electric field. This phenomenon is known for antiferroelectric liquid crystals. By doping a racemic LC polymer with a chiral monomeric LC we induced a spontaneous polarization. Colored FLC polymers were obtained by two different approaches. In an FLC–dye copolymer, increasing switching speed in three different chiral smectic phases was observed when increasing the dye concentration.  相似文献   

15.
Thermodynamical, optical and dielectric characterisation of a material possessing ferroelectric SmC* and hexatic SmB* phases has been carried out. Phase identification has been done by miscibility studies. From the dielectric studies, a relaxation mechanism is observed in the low MHz region of the SmA* phase, which is related to the tilt fluctuation (soft mode) of the directors. In the SmC* phase, another collective relaxation mechanism has been observed in the kHz region, which is related to the phase fluctuation (Goldstone mode) of the directors. In the SmBh* phase, 2-weak relaxation modes are observed in the kHz and MHz frequency range, respectively, due to individual molecular rotations.  相似文献   

16.
A novel side-chain liquid crystal polysiloxane and its corresponding monomer were synthesized by the standard method. We ensured their structures were as expected and their purities were high by 1H nuclear magnetic resonance and infrared measurements. They were studied by differential scanning calorimetry (DSC) for their thermal analysis and polarizing optical microscopy (POM) with hot stage for their textures and transition temperatures. The results showed good liquid crystal properties and low transition temperatures of the mesophase. X-ray diffractions were done to research their layer structure and SmA and SmC* phases were assured, in good agreement with the results of the POM and DSC measurements. The optical rotation degree was also measured.  相似文献   

17.
Dielectric and DSC methods were used to study a new fluorinated liquid crystalline compound exhibiting ferroelectric and paraelectric phases as well as an intermediate alpha sub-phase. Two dielectric relaxation processes were revealed in the SmC* phase: a typical Goldstone mode over the whole temperature range and a soft mode in the pre-transition region on both sides of the SmC*–SmA* transition. From the temperature dependencies of the dielectric increments and critical frequencies for the dielectric relaxation processes observed in all the liquid crystalline phases, as well as from texture observations, it was shown that there is a SmC*α sub-phase between the ferroelectric SmC* and paraelectric SmA* phases.  相似文献   

18.
We have investigated the orthoconic antiferroelectric liquid crystal mixture W107 by means of optical, X-ray and calorimetry measurements in order to assess the origin of the unusally high tilt angle between the optic axis and the smectic layer normal in this material. The optical birefringence increases strongly below the transition to the tilted phases, showing that the onset of tilt is coupled with a considerable increase in orientational order. The layer spacing in the smectic A* (SmA*) phase is notably smaller than the extended length of the molecules constituting the mixture, and the shrinkage in smectic C* (SmC*) and smectic Ca* (SmCa*) is much less than the optical tilt angle would predict. These observations indicate that the tilting transition in W107 to a large extent follows the asymmetric de Vries diffuse cone model. The molecules are on average considerably tilted with respect to the layer normal already in the SmA* phase but the tilting directions are there randomly distributed, giving the phase its uniaxial characteristics. At the transition to the SmC* phase, the distribution is biased such that the molecular tilt already present in SmA* now gives a contribution to the macroscopic tilt angle. In addition, there is a certain increase of the average tilt angle, leading to a slightly smaller layer thickness in the tilted phases. Analysis of the wide angle scattering data show that the molecular tilt in SmCa* is about 20° larger than in SmA*. The large optical tilt (45°) in the SmCa* phase thus results from a combination of an increased average molecule tilt and a biasing of tilt direction fluctuations.  相似文献   

19.
《Liquid crystals》2012,39(15):2256-2268
ABSTRACT

Physical properties of the partially fluorinated compound 3F5FPhF, with hockey stick-like molecules, were studied by complementary methods. Apart from the already reported paraelectric SmA*, ferroelectric SmC* and antiferroelectric SmC*A phases, the presence of the smectic C*α subphase in the phase sequence was proved by differential scanning calorimetry, polarising optical microscopy, electro-optic and dielectric spectroscopy methods. The temperature dependence of the smectic layer thickness and correlation length of the lateral short-range order was determined by X-ray diffraction. Based on dielectric measurements three relaxation processes were revealed in the antiferroelectric SmC*A phase (two collective: PL, PH and one molecular: s-process), two collective ones (Goldstone and soft modes) were found both in the ferroelectric SmC* phase and SmC*α subphase while one relaxation process (soft mode) in the paraelectric SmA* phase. The results were compared with that obtained for other structurally similar compounds, and it was shown that even addition of one methylene group to the side chain influences much on the physical properties.  相似文献   

20.
《Liquid crystals》2008,35(2):195-204
In the cylindrical pore geometry of inorganic Anopore membranes the collective relaxation processes observed in a bulk antiferroelectric liquid crystal change considerably under confinement. The frequency degeneration of the soft and Goldstone modes present at the smectic A* (SmA*)-chiral smectic C (SmC*) phase transition in the bulk phase is removed under geometrical restrictions. The relaxation rate of the soft mode is strongly modified due to the deformation of the smectic layers in the curved geometry of the pores and is superimposed by the molecular relaxation process in the SmA* and SmC* phases. The soft mode in confinement splits into two relaxation processes, which are present through all other mesophases (SmC* and SmCa*). One of them is nearly temperature independent and slightly decreases in frequency in the SmCa* phase. This Goldstone-like process can be assigned to the highly deformed helical structure fluctuations. The second one exhibits the characteristic features for the molecular and soft mode relaxation processes depending on the temperature range. The biquadratic and the piezoelectric coupling between the tilt angle and spontaneous polarization are revealed in their temperature dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号