首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
NaNiO2 has been studied by neutron-powder diffraction, magnetic susceptibility and submillimeter wave ESR. The monoclinic structure at room temperature is characterised by a ferrodistorsive orbital ordering due to the Jahn-Teller (JT) effect of the Ni3+ ions in the low spin state. NaNiO2 undergoes a structural transition at around 480 K, above which the orbital ordering disappears. The high temperature phase is rhombohedral with the layered -NaFeO2 structure ( space group). The magnetic susceptibility exhibits hysteresis and we observe a change of the Curie-Weiss law parameters above the JT transition. The anisotropy of the g-factor at 200 K can be attributed to the JT effect which favours the orbital occupation. Finally, the interplay between the magnetic and structural properties of NaNiO2 and Li1-xNi1+xO2 is discussed. Received 29 May 2000  相似文献   

2.
We study the magnetic structure of layered Li1-xNi1+xO2 and propose a new scheme: the AF interaction between the excess Ni2+ in the Li layers and the Ni3+ ions in the Ni planes, gives rise to the formation of ferrimagnetic clusters, which control the physics of these systems. The values of the different interactions are estimated from a mean field calculation in the high temperature limit. For the small x samples studied here the method does not yield an accurate value of , but it is very sensitive to the intralayer interactions, allowing to conclude that they are ferromagnetic. The recent proposal of a quantum spin-orbital liquid in this system is discussed and the comparison with Jahn-Teller distorted NaNiO2 is made. Received 8 December 1999  相似文献   

3.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

4.
Electron paramagnetic resonance (EPR) single-crystal rotation studies at very high frequency (249.9 GHz) of transition metal ions with electron spins greater than one-half are reported. At 249.9 GHz, the spectra are in the high-field limit despite large zero-field splittings. This leads to a considerable simplification of the spectra, and aids in their interpretation. Single-crystal 249.9 GHz EPR spectra of Ni2+ in Ni2CdCl6· 12H2O, Mn2+ (0.2%) in ZnV2O7, and Fe3+ (2%) in CaYA104 were recorded at 253 K in an external magnetic field of up to 9.2 T, along with those at X-band and Q-band frequencies at 295 K and lower temperatures. The goniometer used at 249.9 GHz for single-crystal rotation is based on a quasi-optical design and is an integral part of a special Fabry-Pérot resonator. The values of the spin-Hamiltonian parameters were estimated from a simultaneous fitting of all of the observed line positions at several microwave frequencies recorded at various orientations of each crystal with respect to the external magnetic field with least-squares fitting in conjunction with matrix diagonalization. Estimates of zero-field splitting parameterD at room temperature are: for Ni2+, about ?31 GHz (site I) and about ?7 GHz (site II); for Mn2+, about 6 GHz; and for Fe3+, about 29 GHz.  相似文献   

5.
The electron paramagnetic resonance spectra of isolated and dimer impurity centers of trivalent chromium ions in the octahedral Ml sites in synthetic forsterite are studied in the frequency range of 65–90 GHz. The measurements are performed at 4.2 K in magnetic field from ?0.04 to 0.3 T. The zero-field splitting between spin doublets of the isolated Cr3+ ion Δs = 66.7 GHz and between spin sublevels of the Cr3+-Cr3+ dimer Δd1 = 71.5 GHz and Δd2 = 73.0 GHz is measured directly at zero field. The analysis of the spin Hamiltonian parameters shows that the dimer center consists of a pair of Cr3+ ions with an Mg2+ vacancy between them replacing three Mg2+ ions situated in a quasi-one-dimensional chain aligned parallel to the crystal c-axis. It is found that the exchange interaction in the dimer is ferromagnetic with parameters Jz = 0.47 GHz and Jt = 0.79 GHz.  相似文献   

6.
Anelastic relaxation and 139LaNQR relaxation rates in La2–xSrxCuO4 for Sr content around 2 and 3 percent are discussed in terms of spin and lattice excitations and of the related ordering processes. It is argued how the phase diagram of La2–xSrxCuO4 at the boundary between the antiferromagnetic (AF) and the spin-glass phase (x = 0.02) could be more complicate than previously thought, with a transition to a quasi-long range ordered state at K, as indicated by neutron scattering data. On the other hand, the 139LaNQR spectra are compatible with a transition to an AF phase around K, in agreement with the phase diagram commonly accepted in literature. In this case the peaks in NQR and anelastic relaxation rates around 150 K and 80 K respectively in La1.98Sr0.02CuO4, yield the first evidence of freezing process involving simultaneously lattice and spin excitations, possibly corresponding to motion of charged stripes. Received 18 May 2000 and Received in final form 11 July 2000  相似文献   

7.
The oxygen deficient cobaltites LnBaCo2O5 (Ln = Tb, Dy, Ho) exhibit two successive crystallographic transitions at T N 340 K and at T CO 210 K. Whereas the first transition (P4/mmm to Pmmm) is related to the long-range antiferromagnetic ordering of the Co ions (spin ordering), the second transition (Pmmm to Pmmb) corresponds to the long-range ordering of the Co2+ and Co3+ species (charge ordering) occurring in 1:1 ratio in the structure. The charge ordered (CO) state was directly evidenced by the observation of additional superstructure peaks using neutron and electron diffraction techniques. The CO state was also confirmed indirectly from refinement of high resolution neutron diffraction data as well as from resistivity and DSC measurements. From the refined saturated magnetic moment values only, 3.7 and 2.7 , the electronic configuration of the Co ions in LnBaCo2O5 remains conjectural. Two pictures, with Co3+ ions either in intermediate spin state ( t 5 2g e 1 g ) or in high spin state ( t 4 2g e 2 g ), describe equally well our experimental data. In both cases, the observed magnetic structure can be explained using the qualitative Goodenough-Kanamori rules for superexchange. Finally, in contrast to the parent Ln = Y compound [Vogt et al. , Phys. Rev. Lett. 84, 2969 (2000)], we do not report any spin transition in LnBaCo2O5 (Ln = Tb, Dy, Ho). Received 13 December 2000  相似文献   

8.
The frequency-field and orientation dependences of the electron paramagnetic resonance (EPR) spectra are measured for impurity Tm3+ ions in yttrium orthosilicate (Y2SiO5) single crystals by stationary EPR spectroscopy in the frequency range of 50–100 GHz at 4.2 K. The position of the impurity ion in the crystal lattice and its magnetic characteristics are determined. The temperature dependences of the spin–lattice and phase relaxation times are measured by pulse EPR methods in the temperature range of 5–15 K and the high efficiency of the direct single-phonon mechanism of spin–lattice relaxation is established. This greatly shortens the spin–lattice relaxation time at low temperatures and makes impurity Tm3+ ions in Y2SiO5 a promising basis for the implementation of high-speed quantum memory based on rare-earth ions in dielectric crystals.  相似文献   

9.
The optical absorption spectra, microstructure and electronic spin resonance parameters (electronic spin resonance (ESR) g factor) for Ni2+ ions at octahedral centers of nickel ferrite nanoparticles are calculated from the two-spin–orbit-parameter model. The effect of spin–orbital coupling of the central metal 3d8 ions and ligand oxygen ions has been taken into account in the full energy matrix and ESR g formula. The calculated results are in good agreement with the observed values. In addition, the microstructures of Ni2+ ions at octahedral centers in NiFe2O4 are reasonably determined from the calculations.  相似文献   

10.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   

11.
Nickel nanoparticles were grown in silica glass by annealing of the sol-gel prepared silicate matrices doped with nickel nitrate. TEM characterization of Ni/SiO2 glass proves the formation of isolated spherical nickel nanoparticles with mean sizes 6.7 and 20 nm depending on annealing conditions. The absorption and photoluminescence spectra of Ni/SiO2 glasses were measured. In the absorption spectra, we observed the band related to the surface plasmon resonance (SPR) in Ni nanoparticles. The broadening of SPR was observed with decrease of Ni nanoparticle size. The width of the surface plasmon band decreases 1.5 times at the lowering of temperature from 293 to 2 K because of strong electron-phonon interaction. The spectra proved the creation of nickel oxide NiO clusters and Ni2+ ions in silica glass as well.  相似文献   

12.
The magnetic properties of the cyclic compound [Fe6(bicine)6] LiClO4 . 2MeOH are reported. The cluster Fe6(bicine)6 forms an antiferromagnetically coupled ring structure of Fe III ions. The magnetic susceptibility is measured between 2 and 300 K and yields the exchange coupling of J/k B = - 27.5±0.5 K. The field dependence of the magnetic moment is studied at 3 and 6 K in magnetic fields up to 5 T. The zero-field splitting of the first excited spin states with S = 2 and 3 are determined by ESR at 94 GHz. The intra-molecular interactions of the Fe III ions are analyzed and the on-site anisotropy of the Fe III due to the ligand-configuration is determined to d /k B = - 0.633±0.008K. Received 28 October 2002 / Received in final form 22 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: bernd@piobelix.physik.uni-karlsruhe.de  相似文献   

13.
The Pr 1-x CaxMnO3 system exhibits a ferromagnetic insulating state for the composition range x ? 0.25. A metallic ferromagnetic state is never realized because of the low hole concentration and the very small averaged A-site cation radius. In the present study, the nature of the magnetic excitations at low temperature has been investigated by specific heat measurements on a Pr 0.8 Ca0.2MnO3 single crystal. The decrease of the specific heat under magnetic field is qualitatively consistent with a suppression of ferromagnetic spin waves in a magnetic field. However, at low temperature, the qualitative agreement with the ferromagnetic spin waves picture is poor. It appears that the large reduction of the specific heat due to the spin waves is compensated by a Schottky-like contribution possibly arising from a Zeeman splitting of the ground state multiplet of the Pr3+ ions. Received 21 May 2001 and Received in final form 14 December 2001  相似文献   

14.
The low temperature magnetic and transport properties of the Pr0.5Ca0.5Mn1-xNixO3 manganites ( 0≤ x ≤0.1) have been investigated. The presence of Ni hinders the charge and orbital ordering observed in Pr0.5Ca0.5MnO3 and favors the creation of ferromagnetic regions, leading to phase separation. The ferromagnetic fractions induced by the Ni substitution have been estimated from magnetization measurements, they are large and reach 40% for 4% of Ni. Steps are observed in the M ( H ) and ρ( H ) curves of all the samples at T < 5 K. They are similar to the steps observed in Pr0.5Ca0.5Mn1-xMxO3, where M is a non magnetic cation (Mg2+, Ga3+,...), and for which the ferromagnetic fractions are very small (less than 2%), however, their appearance is restricted to lower temperatures (T < 5 K) with Ni dopant than with non magnetic cations. This study shows that steps can be observed in a wide range of phase-separated systems, even when the ferromagnetic fraction is very large. Received 5 April 2002 / Received in final form 8 July 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: antoine.maignan@ismra.fr  相似文献   

15.
The magnetic properties of polycrystalline PrFe1−xNixO3 (x≤0.3) system were studied using Mössbauer spectroscopy and magnetization measurements. The Mossbauer spectra exhibit six line spectra which loses its sharpness as the Ni substitution increases within the system. As the Ni concentration in the system increases, the hyperfine field and isomer shift shows decrease, which is vivid from the sluggish nature of the sextets. The small value of quadrupole splitting confirms the octahedral environment of the Fe+3 ions. The magnetization curves show the reversible behavior and represent the fall in negative molecular field leading to AFM frustration. From these results, we conclude that sagging in the spectra reveals the change from antiferromagnetic state to ferromagnetic state, which can be attributed to mixed state of Fe+3 ions i.e. high spin (HS) and low spin (LS) which is a consequence of progressive collapse of Hund’s rule due to HS→LS transition. These results confirm the weak ferromagnetic component due to canted-AFM spin arrangement of Fe3+ magnetic moments.  相似文献   

16.
We report on the synthesis, structural and electrical characterization of high quality Tl2Ba2Ca1Cu2O8 (Tl-2212) superconducting films. The samples have been grown ex-situ on mm2 LaAlO3 (100) substrates by a combined approach of metal-organic chemical vapor deposition (MOCVD) and thallium vapor diffusion. The morphological and compositional nature of the c-axis oriented films has been investigated by SEM and X-ray analyses. Typical values of K and MA/cm2 at 77 K have been measured. Microwave measurements have been performed at f = 87 GHz inserting the film in a copper cavity and at f =1.5 GHz on patterned samples using a microstrip resonator technique. A penetration depth nm is evaluated by fitting the microwave data with phenomenological equations. The minimum value of the surface resistance measured at 4.2 K is 60 and 6 m at 1.5 GHz and 87 GHz respectively. The microwave data are described in the context of a modified two fluid model. An evaluation of the temperature dependence of the scattering rate has been performed through the simultaneous measurement of the surface resistance and the penetration depth. Received 16 December 1999 and Received in final form 17 March 2000  相似文献   

17.
We have studied in detail the crystal and magnetic structures of the oxyphosphates MFePO5 (M: divalent transition metal) using neutron powder diffraction as a function of temperature. All of them are isomorphic to the mixed valence compound α-Fe2PO5 with space-group Pnma. No disorder exists between the two metallic sites. The M2+O6 octahedra share edges between them and faces with Fe3+O6 octahedra building zigzag chains running parallel to the b-axis that are connected by PO4 tetrahedra. The topology of this structure gives rise to a complex pattern of super-exchange interactions responsible of the observed antiferromagnetic order. The magnetic structures are all collinear with the spin directed along the b-axis except for M = Co. The experimental magnetic moments of Cu+2 and Ni2+ correspond to the expected ionic value, on the contrary the magnetic moment of Fe3+ is reduced, probably due to covalence effects, and that of Co2+ is greater than the spin-only value indicating a non negligible orbital contribution. Using numerical calculations we have established a magnetic phase diagram adapted for this type of crystal structure and determined the constraints to be satisfied by the values of the exchange interactions in order to obtain the observed magnetic structure as the ground state. Received 15 December 2000 and Received in final form 25 June 2001  相似文献   

18.
The inelastic neutron scattering technique was employed to study the magnetic excitation spectra in the diluted one-dimensional Heisenberg antiferromagnet CsMn1-xMgxBr3 (x =0, 0.05, 0.10, 0.25, 0.50). The spectral response is interpreted in terms of spin-wave excitations in finite chain segments of Mn2+ ions, which are found to exist as long as the chain length exceeds twice the wavelength of the spin excitation. This limit determines the crossover into the mesoscopic regime. Received 31 December 1999  相似文献   

19.
The presence of a buried, ultra-thin amorphous interlayer in the interface of room temperature deposited Ni film with a crystalline Si(100) substrate has been observed using cross sectional transmission electron microscopy (XTEM). The electron density of the interlayer silicide is found to be 2.02 e/?3 by specular X-ray reflectivity (XRR) measurements. X-ray diffraction (XRD) is used to investigate the growth of deposited Ni film on the buried ultra-thin silicide layer. The Ni film is found to be highly textured in an Ni(111) plane. The enthalpy of formation of the Ni/Si system is calculated using Miedema’s model to explain the role of amorphous interlayer silicide on the growth of textured Ni film. The local temperature of the interlayer silicide is calculated using enthalpy of formation and the average heat capacity of Ni and Si. The local temperature is around 1042 K if the interlayer compound is Ni3Si and the local temperature is 1389 K if the interlayer compound is Ni2Si. The surface mobility of the further deposited Ni atoms is enhanced due to the local temperature rise of the amorphous interlayer and produced highly textured Ni film. Received: 2 March 2000 / Accepted: 28 March 2000 / Published online: 11 May 2000  相似文献   

20.
The magnetic susceptibility and the electron spin resonance in the X-band of the transition metal oxide compound MgVO3 are reported. We show that this compound, made of weakly coupled infinite chains of VO5 pyramids, behaves as a S =1/2 one-dimensional Heisenberg antiferromagnet. From the ESR and magnetic experiments we deduce the Néel temperature K, the in-chain coupling constant K and the g-factor values g x = g z =1.972(2), g y =1.946(1) for V4+ ions in MgVO3. Received 14 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号