首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectroscopy complimented with infrared spectroscopy has been used to study the mineral stitchtite, a hydrotalcite of formula Mg6Cr2(CO3)(OH)16.4H2O. Two bands are observed at 1087 and 1067 cm(-1) with an intensity ratio of approximately 2.5/1 and are attributed to the symmetric stretching vibrations of the carbonate anion. The observation of two bands is attributed to two species of carbonate in the interlayer, namely weakly hydrogen bonded and strongly hydrogen bonded. Two infrared bands are found at 1457 and 1381 cm(-1) and are assigned to the antisymmetric stretching modes. These bands were not observed in the Raman spectrum. Two infrared bands are observed at 744 and 685 cm(-1) and are assigned to the nu4 bending modes. Two Raman bands were observed at 539 and 531 cm(-1) attributed to the nu2 bending modes. Importantly the band positions of the paragenically related hydrotalcites stitchtite, iowaite, pyroaurite and reevesite all of which contain the carbonate anion occur at different wavenumbers. Consequently, Raman spectroscopy can be used to distinguish these minerals, particularly in the field where many of these hydrotalcites occur simultaneously in ore zones.  相似文献   

2.
Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.  相似文献   

3.
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm(-1) is assigned to the ν1 AsO4(3-) (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm(-1) to the ν3 AsO4(3-) antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm(-1) are assigned to the corresponding ν4 and ν2 bending modes and BiOBi (vibration of bridging oxygen) and BiO (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm(-1). A broad low intensity band at 3095 cm(-1) is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm(-1) is assigned to δ(BiOH) vibration.  相似文献   

4.
Newberyite Mg(PO3OH)·3H2O is a mineral found in caves such as from Moorba Cave, Jurien Bay, Western Australia, the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of 'cave' minerals. The intense sharp band at 982 cm(-1) is assigned to the PO4(3-)ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm(-1) are assigned to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm(-1) are attributed to the PO4(3-)ν4 bending modes. An intense Raman band for newberyite at 398 cm(-1) with a shoulder band at 413 cm(-1) is assigned to the PO4(3-)ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728 ? (3267 cm(-1)), 2.781 ? (3374 cm(-1)), 2.868 ? (3479 cm(-1)), and 2.918 ? (3515 cm(-1)). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.  相似文献   

5.
The mineral sanjuanite Al2(PO4)(SO4)(OH)·9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm(-1), assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm(-1) is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm(-1) are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.  相似文献   

6.
Effect of water on the formamide-intercalation of kaolinite   总被引:12,自引:0,他引:12  
The molecular structures of low defect kaolinite completely intercalated with formamide and formamide-water mixtures have been determined using a combination of X-ray diffraction, thermoanalytical techniques, DRIFT and Raman spectroscopy. Expansion of the kaolinite to 10.09 A was observed with subtle differences whether the kaolinite was expanded with formamide or formamide-water mixtures. Thermal analysis showed that greater amounts of formamide could be intercalated into the kaolinite in the presence of water. New infrared bands were observed for the formamide intercalated kaolinites at 3648, 3630 and 3606 cm(-1). These bands are attributed to the hydroxyl stretching frequencies of the inner surface hydroxyls hydrogen bonded to formamide with water, formamide and interlamellar water. Bands were observed at similar positions in the Raman spectrum. At liquid nitrogen temperature, the 3630 cm(-1) Raman band separated into two bands at 3633 and 3625 cm(-1). DRIFT spectra showed the hydroxyl deformation mode at 905 cm(-1). Changes in the molecular structure of the formamide are observed through both the NH stretching vibrations and the amide 1 and 2 bands. Upon intercalation of kaolinite with formamide, bands are observed at 3460, 3344, 3248 and 3167 cm(-1) attributed to the NH stretching vibration of the NH involved with hydrogen bonded to the oxygens of the kaolinite siloxane surface. In the DRIFT spectra of the formamide intercalated kaolinites bands are observed at 1700 and 1671 cm(-1) and are attributed to the amide 1 and amide 2 vibrations.  相似文献   

7.
Vibrational spectroscopy of formamide-intercalated kaolinites   总被引:2,自引:0,他引:2  
The vibrational spectroscopy of low and high defect kaolinites fully and partially intercalated with formamide have been determined using a combination of X-ray diffraction, DRIFT and Raman spectroscopy. Expansion of the high defect kaolinite to 10.09 A resulted in a decrease in the peak width of the d(001) peak attributed to a decrease in defect structures upon intercalation. Changes in the defect structures of the low defect kaolinite were observed. Additional infrared bands were observed for the formamide intercalated kaolinites at 3629 and 3606 cm(-1). The 3629 cm(-1) band is attributed to the hydroxyl stretching frequency of the inner surface hydroxyl group hydrogen bonded to the carboxyl group of the formamide. The 3606 cm(-1) band is ascribed to water in the interlayer. Concomitant changes are observed in both the hydroxyl deformation modes and in the carboxyl bands.  相似文献   

8.
Controlled rate thermal analysis (CRTA) technology made possible the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites. X-ray diffraction shows that the CRTA-treated formamide-intercalated kaolinites remain expanded after CRTA treatment. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites with both intercalated and adsorbed formamide. An intense band is observed at 3629 cm(-1), attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm(-1) and are attributed to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl stretching band of the inner hydroxyl is readily observed at 3621 cm(-1) in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. The Raman bands of the formamide in the CRTA-treated intercalated kaolinites are readily observed. Copyright 2001 Academic Press.  相似文献   

9.
The structure of the hydrotalcite desautelsite Mg6Mn2CO3(OH)16.4H2O has been studied by a combination of Raman and infrared spectroscopy. Three intense Raman bands are observed at 1086, 1062 and 1055 cm(-1). A model based upon the observation of three CO3 stretching vibrations is presented. The CO3 anion may be (a) non-hydrogen bonded, (b) hydrogen bonded to the interlayer water and (c) hydrogen bonded to the brucite-like hydroxyl surface. Two intense bands at 3646 and 3608 cm(-1) are attributed to MgOH and MnOH stretching vibrations. Infrared bands at 3476, 3333, 3165 and 2991 cm(-1) are assigned to water stretching bands. Raman spectroscopy has proven a powerful tool for the study of hydrotalcite minerals.  相似文献   

10.
Infrared spectroscopy has been used to characterise synthesised hydrotalcites of formula Mg(x)Zn(6 - x)Cr2(OH)16(CO3) x 4H2O and Ni(x)Co(6 - x)Cr2(OH)16(CO3) x 4H2O. The infrared spectra are conveniently subdivided into spectral features based (a) upon the carbonate anion (b) the hydroxyl units (c) water units. Three carbonate antisymmetric stretching vibrations are observed at around 1358, 1387 and 1482 cm(-1). The 1482 cm(-1) band is attributed to the CO stretching band of carbonate hydrogen bonded to water. Variation of the intensity ratio of the 1358 and 1387 cm(-1) modes is linear and cation dependent. By using the water bending band profile at 1630 cm(-1) four types of water are identified (a) water hydrogen bonded to the interlayer carbonate ion (b) water hydrogen bonded to the hydrotalcite hydroxyl surface (c) coordinated water and (d) interlamellar water. It is proposed that the water is highly structured in the hydrotalcite interlayer as it is hydrogen bonded to both the carbonate anion, adjacent water molecules and the hydroxyl surface.  相似文献   

11.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes.  相似文献   

12.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

13.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

14.
Uranyl micas are based upon (UO(2)PO(4))(-) units in layered structures with hydrated counter cations between the interlayers. Uranyl micas also known as the autunite minerals are of general formula M(UO2)2(XO4)2 x 8-12H2O where M may be Ba, Ca, Cu, Fe(2+), Mg, Mn(2+) or 1/2(HA1) and X is As or P. The structures of these minerals have been studied using Raman microscopy at 298 and 77K. Six hydroxyl stretching bands are observed of which three are highly polarised. The hydroxyl stretching vibrations are related to the strength of hydrogen bonding of the water OH units. Bands in the Raman spectrum of autunite at 998, 842 and 820 cm(-1) are highly polarised. Low intensity band at 915 cm(-1) is attributed to the nu(3) antisymmetric stretching vibration of (UO(2))(2+) units. The band at 820 cm(-1) is attributed to the nu(1) symmetric stretching mode of the (UO(2))(2+) units. The (UO(2))(2+) bending modes are found at 295 and 222 m(-1). The presence of phosphate and arsenate anions and their isomorphic substitution are readily determined by Raman spectroscopy. The collection of Raman spectra at 77K enables excellent band separation.  相似文献   

15.
Raman spectroscopy has been used to study the tellurite minerals spiroffite and carlfriesite, which are minerals of formula type A(2)(X(3)O(8)) where A is Ca(2+) for the mineral carlfriesite and is Zn(2+) and Mn(2+) for the mineral spiroffite. Raman bands for spiroffite observed at 721 and 743 cm(-1), and 650 cm(-1) are attributed to the nu(1) (Te(3)O(8))(2-) symmetric stretching mode and the nu(3) (Te(3)O(8))(2-) antisymmetric stretching modes, respectively. A second spiroffite mineral sample provided a Raman spectrum with bands at 727 cm(-1) assigned to the nu(1) (Te(3)O(8))(2-) symmetric stretching modes and the band at 640cm(-1) accounted for by the nu(3) (Te(3)O(8))(2-) antisymmetric stretching mode. The Raman spectrum of carlfriesite showed an intense band at 721 cm(-1). Raman bands for spiroffite, observed at (346, 394) and 466 cm(-1) are assigned to the (Te(3)O(8))(2-)nu(2) (A(1)) bending mode and nu(4) (E) bending modes. The Raman spectroscopy of the minerals carlfriesite and spiroffite are difficult because of the presence of impurities and other diagenetically related tellurite minerals.  相似文献   

16.
The infrared and Raman spectra of acetylacetone and its deuterated analogues have been analyzed by the aid of ab initio calculations at post Hartree-Fock level and considering the spectral behavior upon deuteration. By deconvolution of the infrared spectra of acetylacetone and d6-acetylacetone at 1600 cm(-1) region a broad and strong band is found and correlated with the strong Raman lines observed for these compounds in this region. The broadness of this infrared band at room temperature and it's splitting at low temperature is attributed to free rotation of methyl group attached to carbonyl group at room temperature. Furthermore it is found that all ring modes in 1200-1600 cm(-1) region more or less are mixed with the OH in plane bending motion.  相似文献   

17.
Raman spectroscopy of urea and urea-intercalated kaolinites at 77 K   总被引:6,自引:0,他引:6  
The Raman spectra of urea and urea-intercalated kaolinites have been recorded at 77 K using a Renishaw Raman microprobe equipped with liquid nitrogen cooled microscope stage. The NH2 stretching modes of urea were observed as four bands at 3250, 3321, 3355 and 3425 cm(-1) at 77 K. These four bands are attributed to a change in conformation upon cooling to liquid nitrogen temperature. Upon intercalation of urea into both low and high defect kaolinites, only two bands were observed near 3390 and 3410 cm(-1). This is explained by hydrogen bonding between the amine groups of urea and oxygen atoms of the siloxane layer of kaolinite with only one urea conformation. When the intercalated low defect kaolinite was cooled to 77 K, the bands near 3700 cm(-1) attributed to the stretching modes of the inner surface hydroxyls disappeared and a new band was observed at 3615 cm(-1). This is explained by the breaking of hydrogen bonds involving OH groups of the gibbsite-like layer and formation of new bonds to the C=O group of the intercalated urea. Thus it is suggested that at low temperatures two kinds of hydrogen bonds are formed by urea molecules in urea-intercalated kaolinite.  相似文献   

18.
The mineral peisleyite has been studied using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscope (SEM) photomicrographs reveal that the peisleyite morphology consists of an array of small needle-like crystals of around 1 microm in length with a thickness of less than 0.1 microm. Raman spectroscopy in the hydroxyl stretching region shows an intense band at 3506 cm(-1) assigned to the symmetric stretching mode of the OH units. Four bands are observed at 3564, 3404, 3250 and 3135 cm(-1) in the infrared spectrum. These wavenumbers enable an estimation of the hydrogen bond distances 3.052(5), 2.801(0), 2.705(6) and 2.683(6)A. Two intense Raman bands are observed at 1023 and 989 cm(-1) and are assigned to the SO(4) and PO(4) symmetric stretching modes. Other bands are observed at 1356, 1252, 1235, 1152, 1128, 1098 and 1067 cm(-1). The bands at 1067 cm(-1) is attributed to AlOH deformation vibrations. Bands in the low wavenumber region are assigned to the nu(4) and nu(2) out of plane bending modes of the SO(4) and PO(4) units. Raman spectroscopy is a useful tool in determining the vibrational spectroscopy of mixed hydrated multianion minerals such as peisleyite. Information on such a mineral would be difficult to obtain by other means.  相似文献   

19.
A Raman microscope in conjunction with a thermal stage has been used to determine the Raman spectra of single crystals of nacrite at 298 and 77 K. The spectra obtained are a function of the physics of the spectrometer and were orientation dependent. Bands are observed at 3710, 3646, 3630 and 3623 cm(-1). Upon obtaining the Raman spectra at liquid nitrogen temperature, the band at 3648 cm(-1) was not observed but an additional band at 3603 cm(-1) appeared. This latter band may be attributed to the hydroxyl stretching of non-hydrogen bonded interlayer hydroxyls in the nacrite. The bands attributed to both the inner and inner surface hydroxyls moved to lower frequencies upon cooling to liquid nitrogen temperatures. Low frequency bands also showed orientation dependence.  相似文献   

20.
Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)·2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H?O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号