首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
陈楚怡  于洁  陈功  马勇  郭霞生  屠娟  章东 《声学学报》2015,40(4):563-568
提出一种采用B超图像实现高强聚焦超声(HIFU)治疗时声空化的时空量化监控的方法。首先,采用B模式实时成像系统对不同声辐照能量下的HIFU在凝胶仿体中引发的超声空化进行实验监测;接着,利用二维数字图像处理算法消除高强聚焦超声(HIFU)在B超图像中产生的干涉条纹,并在此基础上,对B超成像中观察到的高亮区域的面积变化情况进行量化分析;最后,进一步讨论了驱动声压或脉冲宽度对超声空化产生的高亮区域的生成速度和面积大小的影响。结果显示该方法可以有效去除B超图像中的干涉条纹,并对HIFU引发的空化现象进行实时监测。实验结果还表明辐照声能量的提高将引发更强烈的声空化行为,并且显著缩短HIFU引发的空化泡群的初始生成时间。研究结果对进一步优化HIFU治疗有重要意义。   相似文献   

2.
Thresholds for cavitation produced in water by pulsed ultrasound   总被引:1,自引:0,他引:1  
The threshold for transient cavitation produced in water by pulsed ultrasound was measured as a function of pulse duration and pulse repetition frequency at both 0.98 and 2.30 MHz. The cavitation events were detected with a passive acoustic technique which relies upon the scattering of the irradiation field by the bubble clouds associated with the events. The results indicate that the threshold is independent of pulse duration and acoustic frequency for pulses longer than approximately 10 acoustic cycles. The threshold increases for shorter pulses. The cavitation events are likely to be associated with bubble clouds rather than single bubbles.  相似文献   

3.
One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400–500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects.  相似文献   

4.
When cutaneous fat layers are in the ultrasound imaging region, the phase aberration caused by the fat layers induce image distortion as well as spatial resolution degradation. The phase aberration may complicate clinical procedures particularly when ultrasound imaging is employed for spatial positioning of medical devices like a biopsy needle or HIFU. To compensate the fat layer effects more precisely in beamforming, an inclined-fat-layer model has been established from the magnetic resonance images of the same imaging region as in the ultrasound scanning. We have verified utility of the fat layer model by taking images of a metal needle put into an inclined-fat-layer mimicking phantom. The ultrasound images taken with a 128-element linear phase array operating at 6 MHz have shown better resolution and less distortion when receive beamforming was performed with the phase delay data derived from the inclined-fat-layer model.  相似文献   

5.
In order to quantify the effects of exposure parameters under therapeutic conditions such as sonodynamic therapy, it is necessary initially to evaluate the inertial cavitation activity in vitro. In this study, the dependence of cavitation activity induced by the low-level dual-frequency ultrasound irradiation on exposure parameters has been studied. Experiments were performed in the near 150 kHz and 1 MHz fields in the progressive wave mode. It has been shown that at constant ultrasound energy the fluorescence intensity for continuous sonication is higher than for pulsed mode. With increasing the duty cycle of pulsed field, the inertial cavitation activity is increased. The activity of cavitation produced by simultaneous combined sonication by two ultrasound fields is remarkably higher than the algebraic sum of effects produced by fields separately (p-value < 0.05). This study shows that simultaneous combined dual-frequency ultrasound sonication in continuous mode is more effective in producing inertial cavitation activity at low-level intensity. Therefore, it is concluded that investigations in this combined ultrasound sonication can be useful in sonodynamic therapy for superficial tumors.  相似文献   

6.
The aim of this study is to investigate the mechanism of the erosion process induced by 1.2 MHz pulsed high-intensity focused ultrasound (pulsed HIFU). By using Sonochemiluminescence (SCL) photograph, the initiation and maintenance of active cavitation were observed. In order to understand the role of both inertial cavitation and stable cavitation, a passive cavitation detection (PCD) transducer was used. Since the exposure variables of HIFU are important in the controlled ultrasound tissue erosion, the influence of pulse length (PL) and duty cycle (DC, Ton:Toff) has been examined. The results of tissue hole, SCL observation and acoustic detection revealed that the erosion was highly efficient for shorter PL. For higher DCs, the area of SCL increased with increasing PL. For lower DCs, the area of SCL increased with increasing PL from 10 to 20 μs and then kept constant. For all PLs, the intensity of SCL decreased with lower DC. For all DCs, the intensity of SCL per unit area (the ratio of SCL intensity to SCL area) also decreased with increasing PL from 10 to 80 μs, which suggested that the higher the intensity of SCL is, the higher the efficiency of tissue erosion is. At DC of 1:10, the position of the maximum pixel in SCL pictures was distant from the tissue–fluid interface with the increasing PL because of shielding effect. By the comparison of inertial cavitation dose (ICD) and the stable cavitation dose (SCD), the mechanisms associated with inertial cavitation are very likely to be the key factor of the erosion process.  相似文献   

7.
三维超声微血管成像可直观呈现血流信息,对于脑血管疾病诊断和治疗具有重要意义。本文旨在将超快超声成像技术、超快超声功率多普勒技术和机械扫描相结合,实现脑血管三维成像和脑缺血区域评价。通过工程实现,完成了可同步控制微型线性位移平台移动和超声阵列超快发射、高速采集与压缩存储的三维扫描数据采集序列与系统。利用GPU并行运算,高效实现了超声图像波束合成方法,对原始射频超声数据完成重建。进而,基于SVD杂波滤除技术,从重建三维超声数据中提取了脑部的动态小血管信号,并获得了各切面的功率多普勒成像和冠状面彩色多普勒超声小血管成像。最后,采用体素方法对三维脑血管进行重建。大鼠在体实验结果表明,该成像系统可用于三维脑血管网络在体成像,以及脑血管损伤区域定位与量化评价。本工作对脑病检测技术发展与诊断方法研究具有一定的借鉴意义。此外,相关检测系统和成像算法具有一定普适性,对其他富含微血流血管的组织检测也有一定的参考价值。  相似文献   

8.
The persistence of acoustic cavitation in a pulsed wave ultrasound regime depends upon the ability of cavitation nuclei, i.e., bubbles, to survive the off time between pulses. Due to the dependence of bubble dissolution on surface tension, surface-active agents may affect the stability of bubbles against dissolution. In this study, measurements of bubble dissolution rates in solutions of the surface-active polymer poly(propyl acrylic acid) (PPAA) were conducted to test this premise. The surface activity of PPAA varies with solution pH and concentration of dissolved polymer molecules. The surface tension of PPAA solutions (55-72 dynes/cm) that associated with the polymer surface activity was measured using the Wilhelmy plate technique. Samples of these polymer solutions then were exposed to 1.1 MHz high intensity focused ultrasound, and the dissolution of bubbles created by inertial cavitation was monitored using an active cavitation detection scheme. Analysis of the pulse echo data demonstrated that bubble dissolution time was inversely proportional to the surface tension of the solution. Finally, comparison of the experimental results with dissolution times computed from the Epstein-Plesset equation suggests that the radii of residual bubbles from inertial cavitation increase as the surface tension decreases.  相似文献   

9.
Ultrasound at 20 kHz was applied to a cross-flow ultrafiltration system with gamma-alumina membranes in the presence of colloidal silica particles to systematically investigate how ultrasonic factors affect membrane cleaning. Based on imaging of the ultrasonic cavitation region, optimal cleaning occurred when the membrane was outside but close to the cavitation region. Increasing the filtration pressure increased the compressive forces driving cavitation collapse and resulted in fewer cavitation bubbles absorbing and scattering sound waves and increasing sound wave penetration. However, an increased filtration pressure also resulted in greater permeation drag, and subsequently less improvement in permeate flux compared to low filtration pressure. Finally, pulsed ultrasound with short pulse intervals resulted in permeate flux improvement close to that of continuous sonication.  相似文献   

10.
张春兵  刘政  郭霞生  章东 《中国物理 B》2011,20(2):24301-024301
Microbubbles promise to enhance the efficiency of ultrasound-mediated drug delivery and gene therapy by taking advantage of artificial cavitation nuclei.The purpose of this study is to examine the ultrasound-induced hemolysis in the application of drug delivery in the presence of microbubbles.To achieve this goal,human red blood cells mixed with microbubbles were exposed to 1-MHz pulsed ultrasound.The hemolysis level was measured by a flow cytometry,and the cavitation dose was detected by a passive cavitation detecting system.The results demonstrate that larger cavitation dose would be generated with the increase of acoustic pressure,which might give rise to the enhancement of hemolysis.Besides the experimental observations,the acoustic pressure dependence of the radial oscillation of microbubble was theoretically estimated.The comparison between the experimental and calculation results indicates that the hemolysis should be highly correlated to the acoustic cavitation.  相似文献   

11.
现有B超成像可以提供基于声阻抗差异的组织解剖结构信息,而近年来研究发现,光声成像可以提供标记组织成分的分布和功能信息。本文基于商用B超仪和脉冲激光系统建立了光声超声双模态成像系统,实现了超声组织结构成像和光声生物功能的同时成像。首先基于血红蛋白在某些波段的较强吸光性,实现了肿瘤内部组织血管灌注图像;其次用链接有靶向抗体的纳米颗粒作为靶向光声造影剂,对恶性肿瘤边缘和内部的血管以及血管附近的肿瘤组织进行了成像。最终,通过超声和光声的融合图像提供的肿瘤结构信息与光声图像提供的肿瘤功能信息,可以准确识别肿瘤组织。  相似文献   

12.
The interaction between spherical cavitation bubble and flat wall is transformed into that between the real bubble and imaging bubble by the method of images. Firstly, we investigate the dynamics of real bubble and matched, inversed or mis-matched imaging bubble driven by a small amplitude ultrasound, revealing the characteristics of the interaction between cavitation bubble and rigid, soft and impedance walls. Then, we emphatically study the dynamics of real bubble and mis-matched imaging bubble driven by a finite amplitude ultrasound, and the interaction characteristics between cavitation bubble and real impedance wall are revealed. The results show that the cavitation bubble is always close to the rigid wall and far away from the soft wall; For the impedance wall, whether the cavitation bubble is far away or close depends on the specific wall parameters. Moreover, the direction and magnitude of bubble's translation velocity can be changed by adjusting the driving parameters. Understanding the interaction between cavitation bubble and impedance wall is of great significance for efficient application of ultrasonic cavitation.  相似文献   

13.
Simulation of ultrasound images based on computed tomography (CT) data has previously been performed with different approaches. Shadow effects are normally pronounced in ultrasound images, so they should be included in the simulation. In this study, a method to capture the shadow effects has been developed, which makes the simulated ultrasound images appear more realistic. The method using a focused beam tracing model gives diffuse shadows that are similar to the ones observed in measurements on real objects. Ultrasound images of a cod (Gadus morhua) were obtained with a BK Medical 2202 ProFocus ultrasound scanner (BK Medical, Herlev, Denmark) equipped with a dedicated research interface giving access to beamformed radio frequency data. CT images were obtained with an Aquilion ONE Toshiba CT scanner (Toshiba Medical Systems Corp., Tochigi, Japan). CT data were mapped from Hounsfield units to backscatter strength, attenuation coefficients, and characteristic acoustic impedance. The focused beam tracing model was used to create maps of the transmission coefficient and scattering strength maps. Field II was then used to simulate an ultrasound image of 38.9 × 55.3 × 4.5 mm, using 10(6) point scatterers. As there is no quantitative method to assess quality of a simulated ultrasound image compared to a measured one, visual inspection was used for evaluation.  相似文献   

14.
田淑爱  丁婷  田志鑫  杨录 《应用声学》2020,39(6):849-856
本文提出一种结合空化微泡母小波技术(Cavitation Bubble Wavelet Transform, CBWT)、波束合成和平方差值求和减影(Sum-of-Squared Differences, SSD)的超快速主动空化成像方法。该方法首先发射平面波并接收空化回波信号;其次,基于RPNNP模型构建空化微泡母小波,对空化回波信号进行连续小波变换;再次,对获得的小波系数进行波束合成,包括延迟叠加算法(Delay-and-Sum, DAS)、最小方差算法(Minimum-Variance, MV)和相干系数最小方差算法(Coherence-Factor-based-Minimum-Variance, MVCF),再结合SSD,得到空化图像。结果表明,与未采用CBWT相比,基于CBWT-DAS-SSD、CBWT-MV-SSD和CBWT-MVCF-SSD的空化噪声比分别提高了16.34 dB、15.07 dB、17.71 dB。本文方法可提高空化成像质量,为空化动态实时监控提供参考。  相似文献   

15.
It is shown that the influence of liquid temperature on the sonoluminescence (SL) intensity is different depending on the ultrasound intensity. At the ultrasound intensities not much higher than the cavitation appearance threshold the SL intensity increases with the temperature. At the ultrasound intensities considerably exceeding the cavitation threshold the SL intensity decreases with an increase of the temperature. At intermediate ultrasound intensities the SL intensity temperature dependence is extreme: the cavitation activity at first increases with temperature, reaches a maximum and then decreases. Continuous and pulsed modes of irradiation at frequencies 880 and 21.9 kHz were used in experiments.  相似文献   

16.
The relationship between the cavitation and acoustic peak negative pressure in the high-intensity focused ultrasound(HIFU)Held is analyzed in water and tissue phantom.The peak negative pressure at the focus is determined by a hybrid approach combining the measurement with the simulation.The spheroidal beam equation is utilized to describe the nonlinear acoustic propagation.The waveform at the focus is measured by a fiber optic probe hydrophone in water.The relationship between the source pressure amplitude and the excitation voltage is determined by fitting the measured ratio of the second harmonic to the fundamental component at the focus,based on the model simulation.Then the focal negative pressure is calculated for arbitrary voltage excitation in water and tissue phantom.A portable B-mode ultrasound scanner is applied to monitor HIFU-induced cavitation in real time,and a passive cavitation detection(PCD)system is used to acquire the bubble scattering signals in the HIFU focal volume for the cavitation quantification.The results show that:(1)unstable cavitation starts to appear in degassed water when the peak negative pressure of HIFU signals reaches 13.5 MPa;and(2)the cavitation activity can be detected in tissue phantom by B-mode images and in the PCD system with HIFU peak negative pressures of 9.0 MPa and 7.8 MPa,respectively,which suggests that real-time B-mode images could be used to monitor the cavitation activity in two dimensions,while PCD systems are more sensitive to detect scattering and emission signals from cavitation bubbles.  相似文献   

17.
An increase in cytoplasmic calcium (Ca2+ increase) is a second messenger that is often observed under ultrasound irradiation. We hypothesize that cavitation is a physical mechanism that underlies the increase in Ca2+ in these experiments. To control the presence of cavitation, the wave type was controlled in a sonication chamber. One wave type largely contained a traveling wave (wave type A) while the other wave type largely contained a standing wave (wave type B). Fast Fourier transform (FFT) analysis of a sound field produced by the wave types ascertained that stable cavitation was present only under wave type A ultrasound irradiation. Under the two controlled wave types, the increase in Ca2+ in L929 fibroblasts was observed with fluorescence imaging. Under wave type A ultrasound irradiation, an increase in Ca2+ was observed; however, no increase in Ca2+ was observed under wave type B ultrasound irradiation. We conclude that stable cavitation is involved in the increase of Ca2+ in cells subjected to pulsed ultrasound.  相似文献   

18.

Background

Using magnetic resonance (MR) imaging for navigating catheters has several advantages when compared with the current “gold standard” modality of X-ray imaging. A significant drawback to interventional MR is inferior temporal and spatial resolutions, as high spatial resolution images cannot be collected and displayed at rates equal to X-ray imaging. In particular, passive MR catheter tracking experiments that use positive contrast mechanisms have poor temporal imaging rates and signal-to-noise ratio. As a result, with passive methods, it is often difficult to reconstruct motion artifact-free tracking images from areas with motion, such as the thoracic cavity.

Methods

In this study, several accelerated MR acquisition strategies, including parallel imaging and compressed sensing (CS), were evaluated to determine which method is most effective at improving the frame rate and passive detection of catheters in regions of physiological motion. Device navigation was performed both in vitro, through the aortic arch of an anthropomorphic chest phantom, and in vivo from the femoral artery, up the descending aorta into the supra-aortic branching vessels in canines.

Results and Discussion

The different parallel imaging methods produced images of low quality. CS with a two-fold acceleration was found to be the most effective method for generating tracking images, improving the image frame rate to 5.2 Hz, while maintaining a relatively high in-plane resolution. Using CS, motion artifact was decreased and the catheters were visualized with good conspicuity near the heart.

Conclusions

The improvement in the imaging frame rate by image acceleration was sufficient to overcome motion artifacts and to better visualize catheters in the thoracic cavity with passive tracking. CS preformed best at tracking. Navigation with passive MR catheter tracking was demonstrated from the femoral artery to the carotid artery in canines.  相似文献   

19.
Various industrial processes such as sonochemical processing and ultrasonic cleaning strongly rely on the phenomenon of acoustic cavitation. As the occurrence of acoustic cavitation is incorporating a multitude of interdependent effects, the amount of cavitation activity in a vessel is strongly depending on the ultrasonic process conditions. It is therefore crucial to quantify cavitation activity as a function of the process parameters. At 1 MHz, the active cavitation bubbles are so small that it is becoming difficult to observe them in a direct way. Hence, another metrology based on secondary effects of acoustic cavitation is more suitable to study cavitation activity. In this paper we present a detailed analysis of acoustic cavitation phenomena at 1 MHz ultrasound by means of time-resolved measurements of sonoluminescence, cavitation noise, and synchronized high-speed stroboscopic Schlieren imaging. It is shown that a correlation exists between sonoluminescence, and the ultraharmonic and broadband signals extracted from the cavitation noise spectra. The signals can be utilized to characterize different regimes of cavitation activity at different acoustic power densities. When cavitation activity sets on, the aforementioned signals correlate to fluctuations in the Schlieren contrast as well as the number of nucleated bubbles extracted from the Schlieren Images. This additionally proves that signals extracted from cavitation noise spectra truly represent a measure for cavitation activity. The cyclic behavior of cavitation activity is investigated and related to the evolution of the bubble populations in the ultrasonic tank. It is shown that cavitation activity is strongly linked to the occurrence of fast-moving bubbles. The origin of this “bubble streamers” is investigated and their role in the initialization and propagation of cavitation activity throughout the sonicated liquid is discussed. Finally, it is shown that bubble activity can be stabilized and enhanced by the use of pulsed ultrasound by conserving and recycling active bubbles between subsequent pulsing cycles.  相似文献   

20.
Compared to continuous wave (CW) ultrasound, pulsed wave (PW) ultrasound has been shown to result in enhanced sonochemical degradation of octylbenzene sulfonate (OBS). However, pulsed ultrasound was investigated under limited pulsing conditions. In this study, pulse-enhanced degradation of OBS was investigated over a broad range of pulsing conditions and at two ultrasonic frequencies (616 and 205 kHz). The rate of OBS degradation was compared to the rate of formation of 2-hydroxyterephthalic acid (HTA) following sonolysis of aqueous terephthalic acid (TA) solutions. This study shows that sonication mode and ultrasound frequency affect both OBS degradation and HTA formation rates, but not necessarily in the same way. Unlike TA, OBS, being a surface active solute, alters the cavitation bubble field by adsorbing to the gas/solution interface of cavitation bubbles. Enhanced OBS degradation rates during pulsing are attributed to this adsorption process. However, negative or smaller pulse enhancements compared to enhanced HTA formation rates are attributed to a decrease in the high-energy stable bubble population and a corresponding increase in the transient bubble population. Therefore, sonochemical activity as determined from TA sonolysis cannot be used as a measure of the effect of pulsing on the rate of degradation of surfactants in water. Over relatively long sonolysis times, a decrease in the rate of OBS degradation was observed under CW, but not under PW conditions. We propose that the generation and accumulation of surface active and volatile byproducts on the surface and inside of cavitation bubbles, respectively, during CW sonolysis is a contributing factor to this effect. This result suggests that there are practical applications to the use of pulsed ultrasound as a method to degrade surface active contaminants in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号