首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Here we present a fully discretized projection method with Fourier series which is based on a modification of the fast Fourier transform. The method is applied to systems of integro-differential equations with the Cauchy kernel, boundary integral equations from the boundary element method and, more generally, to certain elliptic pseudodifferential equations on closed smooth curves. We use Gaussian quadratures on families of equidistant partitions combined with the fast Fourier transform. This yields an extremely accurate and fast numerical scheme. We present complete asymptotic error estimates including the quadrature errors. These are quasioptimal and of exponential order for analytic data. Numerical experiments for a scattering problem, the clamped plate and plane estatostatics confirm the theoretical convergence rates and show high accuracy.  相似文献   

2.
Summary We present a multigrid method to solve linear systems arising from Galerkin schemes for a hypersingular boundary integral equation governing three dimensional Neumann problems for the Laplacian. Our algorithm uses damped Jacobi iteration, Gauss-Seidel iteration or SOR as preand post-smoothers. If the integral equation holds on a closed, Lipschitz surface we prove convergence ofV- andW-cycles with any number of smoothing steps. If the integral equation holds on an open, Lipschitz surface (covering crack problems) we show convergence of theW-cycle. Numerical experiments are given which underline the theoretical results.  相似文献   

3.
In this paper, we consider the div-curl problem posed on nonconvex polyhedral domains. We propose a least-squares method based on discontinuous elements with normal and tangential continuity across interior faces, as well as boundary conditions, weakly enforced through a properly designed least-squares functional. Discontinuous elements make it possible to take advantage of regularity of given data (divergence and curl of the solution) and obtain convergence also on nonconvex domains. In general, this is not possible in the least-squares method with standard continuous elements. We show that our method is stable, derive a priori error estimates, and present numerical examples illustrating the method.  相似文献   

4.
In this paper, we define a new class of finite elements for the discretization of problems with Dirichlet boundary conditions. In contrast to standard finite elements, the minimal dimension of the approximation space is independent of the domain geometry and this is especially advantageous for problems on domains with complicated micro-structures. For the proposed finite element method we prove the optimal-order approximation (up to logarithmic terms) and convergence estimates valid also in the cases when the exact solution has a reduced regularity due to re-entering corners of the domain boundary. Numerical experiments confirm the theoretical results and show the potential of our proposed method.  相似文献   

5.
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition. The existence and uniqueness of the solution of the continuous problem is established with the aid of the monotone operator theory. The main attention is paid to the investigation of the finite element approximation using numerical integration for the computation of nonlinear boundary integrals. The solvability of the discrete finite element problem is proved and the convergence of the approximate solutions to the exact one is analysed. Received April 15, 1996 / Revised version received November 22, 1996  相似文献   

6.
We consider the effect of approximation on performance of quasi-Newton methods for infinite dimensional problems. In particular we study methods in which the approximation is refined at each iterate. We show how the local convergence behavior of the quasi-Newton method in the infinite dimensional setting is affected by the refinement strategy. Applications to boundary value problems and integral equations are considered.The research of this author was supported by NSF grant DMS-8601139 and AFOSR grant AFOSR-ISSA-860074.  相似文献   

7.
Summary We prove convergence and error estimates in Sobolev spaces for the collocation method with tensor product splines for strongly elliptic pseudodifferential equations on the torus. Examples of applications include elliptic partial differential equations with periodic boundary conditions but also the classical boundary integral operators of potential theory on torus-shaped domains in three or more dimensions. For odd-degree splines, we prove convergence of nodal collocation for any strongly elliptic operator. For even-degree splines and midpoint collocation, we find an additional condition for the convergence which is satisfied for the classical boundary integral operators. Our analysis is a generalization to higher dimensions of the corresponding analysis of Arnold and Wendland [4].  相似文献   

8.
Summary. We analyze the boundary element Galerkin method for weakly singular and hypersingular integral equations of the first kind on open surfaces. We show that the hp-version of the Galerkin method with geometrically refined meshes converges exponentially fast for both integral equations. The proof of this fast convergence is based on the special structure of the solutions of the integral equations which possess specific singularities at the corners and the edges of the surface. We show that these singularities can be efficiently approximated by piecewise tensor products of splines of different degrees on geometrically graded meshes. Numerical experiments supporting these results are presented. Received December 19, 1996 / Revised version received September 24, 1997 / Published online August 19, 1999  相似文献   

9.
《Quaestiones Mathematicae》2013,36(1):121-138
Abstract

In recent years, fitted operator finite difference methods (FOFDMs) have been developed for numerous types of singularly perturbed ordinary differential equations. The construction of most of these methods differed though the final outcome remained similar. The most crucial aspect was how the difference operator was designed to approximate the differential operator in question. Very often the approaches for constructing these operators had limited scope in the sense that it was difficult to extend them to solve even simple one-dimensional singularly perturbed partial differential equations. However, in some of our most recent work, we have successfully designed a class of FOFDMs and extended them to solve singularly perturbed time-dependent partial differential equations. In this paper, we design and analyze a robust FOFDM to solve a system of coupled singularly perturbed parabolic reaction-diffusion equations. We use the backward Euler method for the semi-discretization in time. An FOFDM is then developed to solve the resulting set of boundary value problems. The proposed method is analyzed for convergence. Our method is uniformly convergent with order one and two, respectively, in time and space, with respect to the perturbation parameters. Some numerical experiments supporting the theoretical investigations are also presented.  相似文献   

10.
Summary Most boundary element methods for two-dimensional boundary value problems are based on point collocation on the boundary and the use of splines as trial functions. Here we present a unified asymptotic error analysis for even as well as for odd degree splines subordinate to uniform or smoothly graded meshes and prove asymptotic convergence of optimal order. The equations are collocated at the breakpoints for odd degree and the internodal midpoints for even degree splines. The crucial assumption for the generalized boundary integral and integro-differential operators is strong ellipticity. Our analysis is based on simple Fourier expansions. In particular, we extend results by J. Saranen and W.L. Wendland from constant to variable coefficient equations. Our results include the first convergence proof of midpoint collocation with piecewise constant functions, i.e., the panel method for solving systems of Cauchy singular integral equations.Dedicated to Prof. Dr. Dr. h.c. mult. Lothar Collatz on the occasion of his 75th birthdayThis work was begun at the Technische Hochschule Darmstadt where Professor Arnold was supported by a North Atlantic Treaty Organization Postdoctoral Fellowship. The work of Professor Arnold is supported by NSF grant BMS-8313247. The work of Professor Wendland was supported by the Stiftung Volkswagenwerk  相似文献   

11.
In this paper we present local a-posteriori error indicators for the Galerkin discretization of boundary integral equations. These error indicators are introduced and investigated by Babuška-Rheinboldt [3] for finite element methods. We transfer them from finite element methods onto boundary element methods and show that they are reliable and efficient for a wide class of integral operators under relatively weak assumptions. These local error indicators are based on the computable residual and can be used for controlling the adaptive mesh refinement. Received March 4, 1996 / Revised version received September 25, 1996  相似文献   

12.
Summary In this paper we consider the following Newton-like methods for the solution of nonlinear equations. In each step of the Newton method the linear equations are solved approximatively by a projection method. We call this a Projective Newton method. For a fixed projection method the approximations often are the same as those of the Newton method applied to a nonlinear projection method. But the efficiency can be increased by adapting the accuracy of the projection method to the convergence of the approximations. We investigate the convergence and the order of convergence for these methods. The results are applied to some Projective Newton methods for nonlinear two point boundary value problems. Some numerical results indicate the efficiency of these methods.
  相似文献   

13.
Summary. The combination technique is a method to reduce the computational time in the numerical approximation of partial differential equations. In this paper, we present a new technique to analyze the convergence rate of the combination technique. This technique is applied to general second order elliptic differential equations in two dimensions. Furthermore, it is proved that the combination technique for Poisson's equation convergences in arbitrary dimensions. Received September 25, 1997 / Revised version received October 22, 1998 / Published online September 7, 1999  相似文献   

14.
We introduce two kinds of the cell boundary element (CBE) methods for convection dominated convection-diffusion equations: one is the CBE method with the exact bubble function and the other with inexact bubble functions. The main focus of this paper is on inexact bubble CBE methods. For inexact bubble CBE methods we introduce a family of numerical methods depending on two parameters, one for control of interior layers and the other for outflow boundary layers. Stability and convergence analysis are provided and numerical tests for inexact bubble CBEs with various choices of parameters are presented.  相似文献   

15.
Summary. In this paper we introduce new local a-posteriori error indicators for the Galerkin discretization of three-dimensional boundary integral equations. These error indicators are efficient and reliable for a wide class of integral operators, in particular for operators of negative order. They are based on local norms of the computable residual and can be used for controlling the adaptive refinement. The proofs of efficiency and reliability are based on the result that the Aronszajn-Slobodeckij norm (given by a double integral for a non-integer ) is localizable for certain functions. Neither inverse estimates nor saturation properties are needed. In this paper, we extend the two-dimensional results of a previous paper to the three-dimensional case. Received March 20, 2000 / Published online November 15, 2001  相似文献   

16.
In this paper, an adaptive finite element method for elliptic eigenvalue problems is studied. Both uniform convergence and optimal complexity of the adaptive finite element eigenvalue approximation are proved. The analysis is based on a certain relationship between the finite element eigenvalue approximation and the associated finite element boundary value approximation which is also established in the paper. This work was partially supported by the National Science Foundation of China under grant 10425105 and the National Basic Research Program under grant 2005CB321704.  相似文献   

17.
We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. Domains are bounded, and have finite fluctuations. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is “spectral” in the polynomial chaos order, in any subdomain which does not contain the random boundaries.  相似文献   

18.
Summary The object of this paper is to study some boundary element methods for the heat equation. Two approaches are considered. The first, based on the heat potential, has been studied numerically by previous authors. Here the convergence analysis in one space dimension is presented. In the second approach, the heat equation is first descretized in time and the resulting elliptic problem is put in the boundary formulation. A straight forward implicit method and Crank-Nicolson's method are thus studied. Again convergence in one space dimension is proved.  相似文献   

19.
Summary. We present an adaptive finite element method for solving elliptic problems in exterior domains, that is for problems in the exterior of a bounded closed domain in , . We describe a procedure to generate a sequence of bounded computational domains , , more precisely, a sequence of successively finer and larger grids, until the desired accuracy of the solution is reached. To this end we prove an a posteriori error estimate for the error on the unbounded domain in the energy norm by means of a residual based error estimator. Furthermore we prove convergence of the adaptive algorithm. Numerical examples show the optimal order of convergence. Received July 8, 1997 /Revised version received October 23, 1997  相似文献   

20.
Approximation theoretic results are obtained for approximation using continuous piecewise polynomials of degree p on meshes of triangular and quadrilateral elements. Estimates for the rate of convergence in Sobolev spaces , are given. The results are applied to estimate the rate of convergence when the p-version finite element method is used to approximate the -Laplacian. It is shown that the rate of convergence of the p-version is always at least that of the h-version (measured in terms of number of degrees of freedom used). If the solution is very smooth then the p-version attains an exponential rate of convergence. If the solution has certain types of singularity, the rate of convergence of the p-version is twice that of the h-version. The analysis generalises the work of Babuska and others to the case . In addition, the approximation theoretic results find immediate application for some types of spectral and spectral element methods. Received August 2, 1995 / Revised version received January 26, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号