首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly-o-aminobenzoate (POA) was prepared by oxidizing o-aminobenzoic acid with (NH4)2S2O8 in an acidic solution. POA was adsorbed on TiO2 nanocrystal surface to obtain a POA-TiO2 nanocomposite. The polymerization reaction, structure, adsorption reaction on TiO2 surface, and visible light sensitization effect of the polymer adsorbed on TiO2 surface were studied by FT-IR and UV-visible spectra, cyclic voltammetry, and measurements of visible light photoelectrochemical and photocatalytic activities. Three kinds of POA with different long conjugate structures can be formed. These polymers have large absorbance in wide visible light region. POA molecules can be adsorbed on TiO2 surface by anchoring their carboxylate groups to the TiO2 surface with a multi-bridging chelating mode, which causes formation of the POA-TiO2 nanocomposite with a high stability. POA adsorbed on the TiO2 nanocrystal showed high visible light sensitization effect in the photocatalytic reaction.  相似文献   

2.
Natural vein graphite with high purity and crystallinity is seldom used as anode material in lithium-ion rechargeable batteries (LIB) due to impurities and inherent surface structure. This study focuses on improving the surface properties of purified natural vein graphite surface by employing mild chemical oxidation. Needle-platy graphite sample with initial average carbon percentage of 99.83% was improved to 99.98% after treatment with 5 vol.% HCl. Surface modification of purified graphite was done by chemical oxidation with (NH4)2S2O8 and HNO3. Fourier-transform infrared spectra of graphite after chemical indicating surface oxidation of graphite surface. X-ray diffraction and scanning electron microscopic studies show the improvement of graphite structure without modification of crystalline structure. Electrochemical performance of lithium-ion cell assembled with developed anode material shows noticeable improvement of the reversible capacity and coulombic efficiency in the first cycle and cycling behavior after surface modification.  相似文献   

3.
4.
The adsorption of HNO3/H2O mixtures on Ag(110) was investigated to learn more about the chemistry of the metal/electrolyte interface. The experiments were performed in ultrahigh vacuum (UHV) using thermal desorption spectroscopy (TDS), low energy electron diffraction (LEED), and electron stimulated desorption ion angular distribution (ESDIAD) over temperatures of 80–650 K and coverages of 0–10 monolayers (ML). As this is the first known study of HNO3 in UHV, the mass spectrometer cracking pattern for HNO3 is here reported. HNO3 adsorbs irreversibly on the clean surface at 80 K and loses its acidic proton to form an adsorbed surface nitrate (NO3) below 150 K. The saturation amount of adsorbed NO3 is 0.4 ± 0.1 ML for which adsorption occurs in either a normal or split c(2 × 2) structure. N03 is stable on the surface up to 450 K beyond which it decomposes directly to gaseous NO2 and NO and adsorbed atomic oxygen. NO3 decomposition is first order with an activation energy Ea = 151±4 kJ mol−1 and a pre-exponential factor of A = 1015.4±0.4s−1. NO3 stabilizes adsorbed H2O by about 8 kJ mol−1 and is hydrated by as many as three H2O molecules. Multilayers of HNO3/H2O desorb at 150–220 K and show evidence of extensive hydrogen bonding and hydration interactions. No evidence for HNO3-induced corrosion or other surface damage was detected in any of these experiments.  相似文献   

5.
A controlled AlGaN surface preparation method avails to improve the performance of GaN-based HEMT devices. A comparative investigation of chemical treatments by (1:10) NH4OH:H2O and (1:10) HCl:H2O solutions for AlGaN surface preparation by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) is reported. The XPS data clearly reveal that the native oxide on AlGaN was composed of Al2O3, Ga2O3 and NO compounds. These compounds were etched off partially or completely by both the chemical treatments, namely NH4OH or HCl solutions, independently. The HCl treatment etches out Al2O3 completely from native oxide unlike NH4OH treatment. The HCl treatment results in larger amount of carbon segregation on AlGaN surfaces, however it removes all oxides’ compounds faster than NH4OH treatment. The AFM results reveal the improvement of surface morphology by both the chemical treatments leading to the surface roughness RMS values of 0.24 nm and 0.21 nm for NH4OH and HCl treated AlGaN layers, respectively.  相似文献   

6.
A sulphur based chemical, ([(NH4)2S/(NH4)2SO4]) to which S has been added not previously reported for the treatment of (111)A InAs surfaces is introduced and benchmarked against the commonly used passivants Na2S·9H2O and ((NH4)2S + S), using Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It has been found that the native oxide layer present on the InAs surface is more effectively removed when treated with ([(NH4)2S/(NH4)2SO4] + S) than with ((NH4)2S + S) or Na2S·9H2O. AES depth profiles of the sulphurized layers revealed the formation of a thin (less than 8.5 nm) In–S surface layer for both ((NH4)2SO4 + S) and ([(NH4)2S/(NH4)2SO4] + S) treatments. No evidence for the formation of As―S bonds was found. Treatment with ([(NH4)2S/(NH4)2SO4] + S) also affected a significant improvement compared to the more established sulphur treatments in the surface morphology of the otherwise poor as-received n-InAs (111)A surface.  相似文献   

7.
Carbon nanotubes (CNTs) were fabricated by the catalytic chemical vapor deposition method and oxidized by HCl, H2SO4, HNO3 and NaOCl solutions for enhancing benzene, toluene, ethylbenzene and p-xylene (BTEX) adsorption in an aqueous solution. The surface nature of CNTs was changed after the H2SO4, HNO3 and NaOCl oxidation, which makes CNTs that adsorb more BTEX. The NaOCl-oxidized CNTs show the greatest enhancement in BTEX adsorption, followed by the HNO3-oxidized CNTs, and then the H2SO4-oxidized CNTs. The adsorption mechanism of BTEX via CNTs is mainly attributed to the π-π electron-donor-acceptor interaction between the aromatic ring of BTEX and the surface carboxylic groups of CNTs. The NaOCl-oxidized CNTs have superior adsorption performance of BTEX as compared to many types of carbon and silica adsorbents reported in the literature. This suggests that the NaOCl-oxidized CNTs are efficient BTEX adsorbents and that they possess good potential applications for BTEX removal in wastewater treatment.  相似文献   

8.
The adsorptions of different gases (CO, H2 and O2) in the hydrogen-rich gas on the co-precipitated Cu-Zr-Ce-O catalyst were discussed and the active sites were ascertained with infrared spectroscopy technique. It was shown that the adsorption strength of CO was stronger than that of O2 or H2. Hydrogen and CO were competitive adsorption and the coexistence H2 and CO on the surface accelerated the rate of CO desorption. Adsorbed H2 could convert into geminal OH groups on the ceria surface at high temperatures in the absence of oxygen, while it was easy to form surface hydroxyl groups at low temperatures and condensed to physical water with increasing desorption temperature in the existence of oxygen. The adsorption of CO2 was strong and it could transform into thermal stable carbonate species even in the reaction conditions. The active sites of the Cu-Zr-Ce-O catalyst were Cu2+ and Cu+, mainly the latter. The oxygen defect sites could be formed on the Cu-Zr-Ce-O catalyst surface through dehydration and decarboxylation.  相似文献   

9.
Monolayers of sulfanilamide on metallic surface can serve as an ideal model for understanding the interaction mechanism between the metal and the sulfanilamide molecule. In the present paper, the surface‐enhanced Raman scattering (SERS) technique was employed to obtain the SERS spectra of sulfanilamide monolayers formed on the silver surface under different pH values. Assignments of the spectra were carried out with the aid of density functional theory (DFT) calculations (BLYP/6‐311G). It can be found that the adsorption function of sulfanilamide on the silver surface was influenced by the pH value. The fully protonated sulfanilamide molecule adsorbed on the silver surface through N13H2 group and the benzene ring anchored in a relatively perpendicular manner leading to N7H2 and S10O2 groups near the surface, while the completely deprotonated sulfanilamide molecule attached on the silver surface via N7H2 and the benzene ring was perpendicular to, and the N13H2 and S10O2 groups were far from the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
FTIR photothermal beam deflection spectroscopy (PBDS) was used to record infrared spectra of medium-temperature carbons before and after they had been subjected to treatments with aqueous HNO3 or H2O2 solution. Changes in the functional groups present on the carbon surfaces can be clearly observed.  相似文献   

11.
The adsorption behaviors of V2O5 nanowires on binary mixed self-assembled monolayers (SAMs) were investigated with variation of the mixing ratio of two differently terminated thiolates on Au. Hydroxyl-covered V2O5 nanowires showed a preferential adsorption on amine (NH2)-terminated thiolates over methyl (CH3)-terminated ones. However, on the binary mixed SAM of NH2- and CH3-terminated thiols, the adsorption behavior did not follow a simple expectation based upon the electrostatic interaction. The total number of adsorbed V2O5 nanowires increased with the mole fraction of NH2-terminated thiolates up to χNH2∼0.5, then it decreased with further increase of χNH2. The height distribution of adsorbed nanowires showed that the relative portion of the agglomerated wires thicker than 3.5 nm to individual wires thinner than 3.5 nm increased up to χNH2∼0.75 and then it decreased with further increase of χNH2. The dispersion of molecules with polar-functional groups as well as the molecular ordering of mixed SAMs is attributed to such adsorption behaviors of V2O5 nanowires.  相似文献   

12.
Isik Onal  Sezen Soyer 《Surface science》2006,600(12):2457-2469
Density functional theory (DFT) calculations performed at B3LYP/6-31G∗∗ level are employed to study water and ammonia adsorption and dissociation on (1 0 1) and (0 0 1) TiO2 anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 cluster models. PM3 semiempirical calculations were also conducted both on Ti2O9H10 and Ti9O33H30 clusters in order to assess the effect of cluster size. Following dissociation, the adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated systems, respectively are also considered. It is found that the adsorption energies and geometries of water and ammonia molecules on (1 0 1) and (0 0 1) anatase cluster models depend on surface relaxation. The vibration frequency values are also calculated for the optimized geometries. The adsorption energies and vibration frequency values computed are compared with the available theoretical and experimental literature.  相似文献   

13.
Surface chemistry of a commercial activated carbon (AC) and of products oxidized in liquid phase using aqueous solutions of a series of oxidizing agents (H2SO4, HNO3, HClO4, H2O2, O3, ClO2, KlO4 and KMnO4) has been studied by FT-IR. Oxidation led to surface groups and structures which, and also the extend of formation, depended on the oxidizing agent and the pH and concentration of the solution used. Most oxidizing agents proved to be effective for the formation of surface C[dbnd]O groups. Variations in pH of solutions of H2O2, KlO4 and KMnO4 unequally affected the oxidation of AC. This was unfavourable with the increase in concentration of the solutions of HNO3 and KMnO4. The reverse was noted with KlO4.  相似文献   

14.
Superhydrophobic functionalized cupric hydroxide (Cu(OH)2) nanotube arrays were prepared on copper foils via a facile alkali assistant surface oxidation technique. Thus nanotube arrays of Cu(OH)2 were directly fabricated on the surface of copper foil by immersing in an aqueous solution of NaOH and (NH4)2S2O8. The wettability of the surface was changed from surperhydrophilicity to superhydrophobicity by chemical modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS). The morphologies, microstructures, crystal structure, chemical compositions and states, and hydrophobicity of the films on the copper foil substrates were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. It was found that the rough structure of the surface helped to magnify the wettability. The static contact angle (CA) for water is larger than 160° and the contact angle hysteresis (CAH) is lower than 5° on the modified surface. The high roughness of the nanotube arrays along with the generated C-F chains by chemical modification contributed to the improved superhydrophobicity. The present research is expected to be significant in providing a new strategy for the preparation of novel multifunctional materials with potential industrial applications on copper substrates.  相似文献   

15.
Carbon-encapsulated magnetic nanoparticles are a new class of materials where the core magnetic nanoparticle is protected from reactions with its environment by graphite shells. Having a structure similar to carbon nanotubes, these nanoparticles could be potentially functionalized using methods which are already applied to those structures. We present the effects of acidic treatments based on HCl, HNO3, and H2SO4 on these nanoparticles highlighting the impact on their magnetic and surface properties. We show that acidic treatments based on HNO3 can be successfully applied for the generation of carboxylic groups on the surface of the nanoparticles. Using methylamine as a model, we demonstrate that these functional groups can be used for further functionalization with amino-containing biomolecules via diimide-activated amidation.  相似文献   

16.
Novel nest-like (NH4)2V6O16·1.5H2O structures made of nanobelts have been synthesized by a facile hydrothermal approach. The powder X-ray diffraction pattern of the sample reveals the monoclinic crystalline phase of (NH4)2V6O16·1.5H2O. The scanning electron microscopy images of the sample obtained at 130 °C for 3 days exhibit nest-like morphology. The transmission electron microscopy result reveals that the nanobelts have a smooth surface. The selected area electron diffraction pattern of the nanobelts indicates single crystalline nature. The two major weight losses occur in thermogravimetric analysis which correspond to the removal of water and ammonia molecules. Further, calcination of the (NH4)2V6O16·1.5H2O product results in the formation of orthorhombic phase of shcherbianite V2O5.  相似文献   

17.
The interaction between ammonium NH3 and H2O molecules in zeolitic nanopores is studied by in situ 1H nuclear magnetic resonance (NMR) method. The powder and single crystal samples of natural zeolites, heulandites Ca4[Al8Si28O72]·24H2O and clinoptilolite (Na, K,Ca1/2)6[Al6Si30O72], were used as the model system. It is shown that penetration of NH3 into the zeolitic nanopores is accompanied by disordering of the hydrogen sublattice of zeolitic water and by the fast proton exchange NH3 + H2O ? [NH4]+ + [OH]? characterized by correlation frequency v c = ~40 kHz. Another nanoreactor interactions are represented by interaction of [NH4]+ ions with exchangeable Na+ and Ca2+ ions of the zeolitic structure. The slow ionic exchange [NH4]+ → [Na,Ca1/2]+ and binding of [NH4]+ in cationic sites of the framework were visualized by NMR spectroscopy along with stepwise release of (Na,Ca1/2)OH from zeolitic pores to the external surface of zeolite grains.  相似文献   

18.
This paper presents a review of our current experimental research on GaP nanowires grown by a vapor deposition method. Their structural, electrical, opto-electric transport, and gas-adsorption properties are reviewed. Our structural studies showed that a GaP nanowire consisted of a core–shell structure with a single-crystalline GaP core and an outer Ga2O3 layer. The individual GaP nanowires exhibited n-type field effects. Their electron mobilities were in the range of about 6 to 22 cm2/V s at room temperature. When the nanowires were illuminated with an ultraviolet light source, an abrupt increase of conductance occurred resulting from carrier generation in the nanowire and de-adsorption of adsorbed OH- or O2 - ions on the Ga2O3 surface shell. Using an intrinsic Ga2O3 shell layer as a gate dielectric, top-gated GaP nanowire field-effect transistors were fabricated and characterized. Like other metal oxide nanowires, the carrier concentration and mobility of GaP nanowires were significantly affected by the surface molecular adsorption of OH or O2. The GaP nanowire devices were fabricated as sensors for NO2, NH3, and H2 gases by using a simple metal decoration technique. PACS 73.63.-b; 72.80.Ey; 85.35.-p  相似文献   

19.
《Surface science》1992,274(1):L515-L518
The kinetic model for irreversible COO2 surface reaction proposed by Ziff et al. is extended to include the variable sticking coefficients of carbon-monoxide (SCO) and oxygen (SO). For all values of SO and SCO a steady reactive state (SRS) is ob unless one of them is zero. The same is true for the NOCO reaction. These results are easily understood in terms of the adsorption rates of the reacting agents.  相似文献   

20.
《Current Applied Physics》2015,15(10):1168-1172
We study the effect of ultra-thin oxide (SiOx) layers inserted at the interfaces of silicon heterojunction (SHJ) solar cells on their open-circuit voltage (VOC). The SiOx layers can be easily formed by dipping c-Si into oxidant such as hydrogen peroxide (H2O2) and nitric acid (HNO3). We confirm the prevention of the undesirable epitaxial growth of Si layers during the deposition of a-Si films by the insertion of the ultra-thin SiOx layers. The formation of the SiOx layers by H2O2 leads to better effective minority carrier lifetime (τeff) and VOC than the case of using HNO3. c-Si with the ultra-thin SiOx layers formed by H2O2 dipping, prior to deposition of a-Si passivation layers, can have high implied VOC of up to ∼0.714 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号