首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of K+ ions on GdTaO4:Eu3+ thin-film phosphors was investigated in order to improve their luminescent properties. The GdTaO4:Eu0.1, Kx thin films were synthesized by sol-gel process, and characterized through measuring their microstructure and luminescence. The results indicated that photoluminescence (PL) intensity of GdTaO4:Eu3+ film was improved remarkably by K doping. There were two maxima in the curve of PL intensity against K+ dopant concentration, where one was improved up to 2.1 times at x = 0.001 and the other was enhanced up to 2.7 times at x = 0.05. The first maximum was regarded as the alteration of the local environment surrounding the Eu3+ activator by incorporation of K+ ions, and the second maximum was due to the flux effect. Additionally, the luminescence increased with the increase of firing temperature from 800 °C to 1200 °C.  相似文献   

2.
YBO3:Eu3+/Tb3+ nanocrystalline thin films were successfully deposited onto quartz glass substrates by Pechini sol-gel dip-coating method, using rare-earth nitrates and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence property of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and fluorescence spectrophotometer. The results of XRD, AFM, XPS and FTIR revealed that the films were composed of spherical YBO3:Eu3+/Tb3+ nanocrystals with average grain size of 80 nm. The YBO3:Eu3+ film exhibited strong orange emission at 595 nm and red emission at 615 nm, which were, respectively ascribed to the (5D07F1) and (5D07F2) transitions of Eu3+. The YBO3:Tb3+ film showed dominant green emission at 545 nm due to the 5D4-7F5 transition of Tb3+.  相似文献   

3.
Using inorganic oxides and salts instead of alkoxides as the main starting materials, we prepared nanocrystalline YVxP1-xO4:Eu3+ and RVO4:Eu3+ (0x1; R=Y,La,Gd) thin-film phosphors by the Pechini sol–gel dip-coating process. The resulting films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and photoluminescence excitation and emission spectra as well as luminescence decay. The results of XRD showed that a solid solution formed in the YVxP1-xO4:Eu3+ film series from x=0 to x=1 with zircon structure. The same structure also held for the GdVO4:Eu3+ film, but the LaVO4:Eu3+ film crystallized with a different structure, monazite. AFM and SEM studies revealed that the phosphor films consisted of spherical particles ranging from 90 to 400 nm depending on the film compositions. With the increase of x values in YVxP1-xO4:Eu3+ films, the integrated emission intensity and the red (5D07F2)-to-orange (5D07F1) intensity ratio of Eu3+ increase due to the increased energy-transfer probability from VO43- to Eu3+ and the increased polarizability of the surrounding oxygen ions, respectively. The x values also have an influence on the decay behavior of Eu3+. The YVO4:Eu3+ and GdVO4:Eu3+ films showed very similar luminescence properties due to their same crystal structures. However, the LaVO4:Eu3+ film exhibited a much different emission property from those of the YVO4:Eu3+ and GdVO4:Eu3+ films due to the structural effects. PACS 73.63.Bd; 78.55.Hx; 78.66.Nk; 81.15.Lm; 81.20.Fw  相似文献   

4.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

5.
X射线成像在生命科学和物质微结构分析等许多方面有着非常重要的应用,X射线成像仪器核心部件之一为X射线-可见光转换屏。透明闪烁薄膜是实现高空间分辨率X射线成像的一条有效途径。铕掺杂M′型LuTaO_4是一种性能优越的闪烁材料,其密度高达9.75g·cm~(-3),化学性质稳定,辐照硬度大,有望制备成透明薄膜型高空间分辨率X射线转换屏。以2-甲氧基乙醇为溶剂、PVP为胶粘剂,采用溶胶-凝胶法成功制备出M′型LuTaO_4∶Eu~(3+)透明闪烁厚膜,并对透射率、光致发光、X射线激发发射光谱和空间分辨率等一系列的薄膜性能进行表征。经过8次旋涂之后,膜层均匀、无裂纹,厚度为2.1μm,发光波段的透射率为70%以上,成像空间分辨率达到1.5μm。将厚膜作为X射线-可见光转换屏,成功对果蝇进行了X射线成像,其复眼结构清晰可见。此外,紫外和X射线激发下闪烁膜的发光特性研究表明,该厚膜具有优良的发光性能,已基本满足高分辨率X射线成像的要求,有望在显微X射线成像方面获得很好应用。  相似文献   

6.
Y2O3:Eu3+ phosphor films have been developed by using the sol-gel process. Comprehensive characterization methods such as Photoluminescent (PL) spectroscopy, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy were used to characterize the Y2O3:Eu3+ phosphor films. In this experiment, the XRD profiles show that the Y2O3:Eu3+ phosphor films crystallization temperature and optimum annealing temperature occur at about 650 and 750 °C, respectively. The optimum dopant concentration is 12 mol% Eu3+ and the critical transfer distance (Rc) among Eu3+ ions is calculated to be about 0.84 nm. Vacuum environment is more efficient than oxygen and nitrogen to eliminate the OH content and hence yields higher luminescent phosphor films. The PL emission intensity of Y2O3:Eu3+ phosphor films is also dependent on the annealing time. It was found that the H2O impurities were effectively eliminated after annealing time of 25 s at 750 °C in vacuum environment. From the experiment results, the schematic energy band diagram of Y2O3:Eu3+ phosphor films is constructed.  相似文献   

7.
Eu-doped Y2O3 particles with spherical shape and fine size were prepared by spray pyrolysis. The cathodoluminescence of Y2O3:Eu3+ powder was optimized by substituting small amount of zinc atoms in place of yttrium sites. As a result, the optimized (Y, Zn)2O3:Eu3+ phosphor showed 60% improved cathodoluminescence compared with Y2O3:Eu3+ particles. The prepared (Y, Zn)2O3:Eu3+ phosphor had spherical shape and 0.726 μm in mean size. Using these particles, the thickness of the phosphor film was controlled by varying the phosphor loading. The brightness and luminous efficiency of phosphor films prepared were monitored with varying the accelerating voltage ranges from 4 to 14 kV. The dependency of the luminous efficiency on the accelerating voltage was very sensitive to the phosphor loading. As increasing the accelerating voltage from 4 to 14 kV, the brightness of phosphor films prepared was monotonically increased from 200 to 1085 cd/cm2, but the saturation in the luminous efficiency appeared at 10 kV. The highest efficiency was achieved when the number of phosphor-particles layer was about 3. More details about the luminous efficiency and brightness were discussed with changing the phosphor loading.  相似文献   

8.
3 thin films have been prepared by metalorganic chemical vapor deposition under reduced pressure. The formation of ferroelectric domains in films grown on SrTiO3 and LaAlO3 substrates was investigated by synchrotron radiation and Rutherford backscattering spectroscopy. Single-domain (3000-Å thick) and multi-domain (4500-Å thick) PbTiO3 films were produced on SrTiO3. For multi-domain PbTiO3 film, the c-domain presented epitaxial structure with its c-axis perpendicular to the substrate surface, while a-domains aligned four-fold symmetrically with c-domains by 2.79° off the c-axis of c-domains. In the film, the measured lattice constants (a, b and c) of the a- and c-domains were different from each other, indicating that the films suffered a modulated strain during domain formation. In contrast, both the a and c domains of films on LaAlO3 were alternatively aligned on substrate with the a-axis of the a-domain and the c-axis of c-domains perpendicular to the substrate surface. Two-dimensional distribution of these domains is proposed and the formation of these kinds of domains is discussed. The surface morphology and phase transition process of single and multi domain PbTiO3 film on SrTiO3 were studied by atomic force microscope (AFM) and high temperature X-ray diffraction, respectively. Received: 15 August 1996/Accepted: 21 January 1997  相似文献   

9.
The current work reports on the influence of the number of laser pulses on the morphological and photoluminescence properties of SrAl2O4:Eu2+,Dy3+ thin films prepared by the pulsed laser deposition (PLD) technique. Atomic force microscopy (AFM) was used to study the surface topography and morphology of the films. The AFM data showed that the film deposited using a higher number of laser pulses was packed with a uniform layer of coarse grains. In addition, the surface of this film was shown to be relatively rougher than the films deposited at a lower number of pulses. Photoluminescence (PL) data were collected using the Cary Eclipse fluorescence spectrophotometer equipped with a monochromatic xenon lamp. An intense green photoluminescence was observed at 517 nm from the films prepared using a higher number of laser pulses. Consistent with the PL data, the decay time of the film deposited using a higher number of pulses was characteristically longer than those of the other films. The effects of laser pulses on morphology, topography and photoluminescence intensity of the SrAl2O4:Eu2+,Dy3+ thin films are discussed.  相似文献   

10.
张晓伟  林涛  徐骏  徐岭  陈坤基 《中国物理 B》2012,21(1):18101-018101
SnO2 nanocrystal and rare-earth Eu3+ ion co-doped SiO2 thin films are prepared by sol-gel and spin coating methods. The formation of tetragonal rutile structure SnO2 nanocrystals with a uniform distribution is confirmed by X-ray diffraction and transmission electron microscopy. Fourier transform infrared spectroscopy is used to investigate the densities of the hydroxyl groups, and it is found that the emission intensity from the 5D0-7F2 transitions of the Eu3+ ions is enhanced by two orders of magnitude due to energy transfer from the oxygen-vacancy-related defects of the SnO2 nanocrystals to nearby Eu3+ ions. The influences of the amounts of Sn and the post-annealing temperatures are systematically evaluated to further understand the mechanism of energy transfer. The luminescence intensity ratio of Eu3+ ions from electric dipole transition and magnetic dipole transition indicate the different probable locations of Eu3+ ions in the sol-gel thin film, which are further discussed based on temperature-dependent photoluminescence measurements.  相似文献   

11.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

12.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

13.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

14.
Gd-substituted Y1-xGdxVO4:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed-laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, surface morphology, and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from Y1-xGdxVO4:Eu3+ films grown under optimized conditions have indicated that the PL brightness is more dependent on the surface roughness than the crystallinity of the films. In particular, the incorporation of Gd into the YVO4 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y0.57Gd0.40Eu0.03VO4 thin film whose brightness was increased by a factor of 2.5 and 1.9 in comparison with that of YVO4:Eu3+ and GdVO4:Eu3+ films, respectively. This phosphor have application to flat panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

15.
Transparent Li-doped Gd2O3:Eu3+ thin-film phosphors were prepared by a modified sol-gel method. The effect of the Li+ ions on luminescent properties of the thin film was investigated. The results indicated that incorporation of Li+ ions into Gd2O3 lattice could result in a remarkable increase on photoluminescence or X-ray excited luminescence, and the strongest emission was observed from Gd1.84Li0.08Eu0.08O3−δ film, in which the intensity was increased by a factor of 1.9 or 2.3 in comparison with that of Gd1.92Eu0.08O3 film. And it could be achieved the highest intensity for sintering the Gd1.84Li0.08Eu0.08O3−δ film at 700 °C. Such a temperature is much lower than the typical solid-state reaction temperature for its powder phosphors. This kind of transparent thin-film phosphors may promise for application to micro X-ray imaging system.  相似文献   

16.
CaAl2O4:Eu2+ co-doped with varying concentrations of Er3+ was prepared by solid-state reaction method. Prepared materials with 1 mol% Eu2+ and 2-10 mol% of Er3+ were investigated for their photoluminescence properties. Phase, morphology and crystalline structure were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Broad band UV-excited luminescence was observed for CaAl2O4:Eu2+, Er3+ in the blue region (λmax=440 nm) due to transitions from 4f65d1 to the 4f7 configuration of the Eu2+ ion. The Er3+ ion co-doping generates deep traps, which results in longer decay time for phosphorescence.  相似文献   

17.
BaWO4:Eu3+,Bi3+ phosphors have been prepared by the conventional high-temperature solid-state reaction and chemical precipitation. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) technologies. When the phosphors are prepared by the high-temperature solidstate reaction, Bi3+ doping into BaWO4:Eu3+ can increase the emission intensity of 613 nm. However, maximum emission at about 595 nm was observed in Eu3+,Bi3+-doped BaWO4 phosphors prepared by the chemical precipitation. The decay constants (monitored at 595 and/or 613 nm) are within 45–100 s. The color purity of the Ba0:865WO4: Eu0:11,Bi0:025 phosphor (prepared by chemical precipitation) was 100%. The emission mechanism of Eu3+,Bi3+ in the BaWO4 phosphors is briefly discussed.  相似文献   

18.
YVO4: Bi3+, Eu3+nanophosphors are prepared by the citrate-assisted low-temperature wet chemical synthesis. When the colloidal solution is aged at 60 °C, the crystalline YVO4: Bi3+, Eu3+ nanorods are formed from the amorphous gel precursors, as confirmed by transmission electron microscopy and X-ray diffractometry (XRD). YVO4: Bi3+, Eu3+ nanophosphors emit red through energy transfer from Bi3+ to Eu3+ under near-UV-light excitation. The emission intensity increases with increasing the fraction of the crystalline phase during aging. The excitation peak corresponding to Bi3+-V5+ charge transfer relative to those of O2−-V5+ and O2−-Eu3+ charge transfers gradually becomes strong until the completion of the crystallization, although the contents of individual Bi3+ and Eu3+ ions incorporated into YVO4 keep constant. When the aging is continued after the completion of the crystallization, the content of incorporated Bi3+ gradually increases, and hence the emission intensity decreases as a result of the energy migration among Bi3+ ions. These results suggest that in addition to the fraction of the crystalline phase and the contents of incorporated Bi3+ and Eu3+ ions, the local chemical states around Bi3+ play significant roles in photoluminescence properties.  相似文献   

19.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

20.
采用共溅射方法和Eu离子注入热生长的SiO2方法得到SiO2(Eu)薄膜,Eu离子的浓度为4%和0.5%.对样品X射线吸收近边结构(XANES)的研究和分析表明,在高温氮气中发生了Eu3+向Eu2+的转变.SiO2(Eu)薄膜高温氮气退火下蓝光的发射证明了这一结论 关键词: 2(Eu)薄膜')" href="#">SiO2(Eu)薄膜 XANES  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号