首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Thermal silicon oxide layers have been implanted at 600 °C with N++C+, N++B+ and N++C++B+ ions. Two different implantation doses have been chosen in order to introduce peak concentrations at the projected range comparable to the SiO2 density. Some pieces of the samples have been annealed in conventional furnace at 1200 °C for 3 h. After annealing, cathodoluminescence measurements show in all cases a main broad band centered at 460 nm (2.7 eV). High doses of C implantation give rise to an intensity attenuation. Phases formed in the oxides have been investigated by Fourier transform infrared spectroscopy before and after annealing. The spectra suggest that N incorporates as BN and probably as a ternary BCN phase in the triply implanted samples, while C seems to bond mainly with B. Boron is also bonded to O in B-O-Si configuration. Depth structure and quantitative composition of the films were deduced from fittings of the spectroscopic ellipsometry measurements.  相似文献   

2.
High purity alumina ceramics (99% Al2O3) was implanted by copper ion and titanium ion in a metal vapour vacuum arc (MEVVA) implanter, respectively. The influence of implantation parameters was studied varying ion fluence. The samples were implanted by 68 keV Cu ion and 82 keV Ti ion with fluences from 1 × 1015 to 1 × 1018 ions/cm2, respectively. The as-implanted samples were investigated by scanning electron microscopy (SEM), glancing X-ray diffraction (GXRD), scanning Auger microscopy (SAM), and four-probe method. Different morphologies were observed on the surfaces of the as-implanted samples and clearly related to implantation parameters. For both ion implantations, the sheet resistances of the alumina samples implanted with Cu and Ti ion fluences of 1 × 1018 ions/cm2, respectively, reached the corresponding minimum values because of the surface metallization. The experimental results indicate that the high-fluence ion implantation resulted in conductive layer on the surface of the as-implanted high purity alumina ceramics.  相似文献   

3.
Carbon ions at 40 keV were implanted into (1 0 0) high-purity p-type silicon wafers at 400 °C to a fluence of 6.5 × 1017 ions/cm2. Subsequent thermal annealing of the implanted samples was performed in a diffusion furnace at atmospheric pressure with inert nitrogen ambient at 1100 °C. Time-of-flight energy elastic recoil detection analysis (ToF-E ERDA) was used to investigate depth distributions of the implanted ions. Infrared transmittance (IR) and Raman scattering measurements were used to characterize the formation of SiC in the implanted Si substrate. X-ray diffraction analysis (XRD) was used to characterize the crystalline quality in the surface layer of the sample. The formation of 3C-SiC and its crystalline structure obtained from the above mentioned techniques was finally confirmed by transmission electron microscopy (TEM). The results show that 3C-SiC is directly formed during implantation, and that the subsequent high-temperature annealing enhances the quality of the poly-crystalline SiC.  相似文献   

4.
The microstructural and optical analysis of Si layers emitting blue luminescence at about 431 nm is reported. These structures have been synthesized by C+ ion implantation and high-temperature annealing in hydrogen atmosphere and electrochemical etching sequentially. With the increasing etching time, the intensity of the blue peak increases at first, decreases then and is substituted by a new red peak at 716 nm at last, which shows characteristics of the emission of porous silicon. CO compounds are induced during C+ implantation and nanometer silicon with embedded structure is formed during annealing, which contributes to the blue emission. The possible mechanism of photoluminescence is presented.  相似文献   

5.
The effects of annealing ambient on the He-induced voids in silicon were investigated using the combination of the Doppler broadening spectroscopy using a variable-energy positron beam and cross-section transmission electron microscopy (XTEM). A 〈1 0 0〉-oriented silicon wafer was implanted with He ions at an energy of 15 keV to a dose of 2 × 1016 cm−2 at room temperature. Post-implantation, the samples were annealed at a temperature of 1000 °C in the ambient of vacuum, argon, nitrogen, air and oxygen. Positron annihilation spectroscopy (PAS) spectra varied with the annealing ambient. XTEM micrographs demonstrated that the density of He-induced voids could be influenced by the annealing ambient.  相似文献   

6.
In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted mono-crystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 1¯ 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5×1016 ions/cm2. Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed.  相似文献   

7.
We report on the optical planar waveguide formation and modal characterization in a Ce:KNSBN crystal by triple helium ion implantation at energies of (2.0, 2.2 and 2.4 MeV) and fluences of (1.5, 1.65 and 2.25) × 1015 cm−2. The prism-coupling method is used to investigate the dark-line spectroscopy at wavelength of 632.8 and 1539 nm, respectively. The refractive index profiles of the waveguide are reconstructed by an effective refractive index method. It is found that the ion-beam irradiation creates slight increase of extraordinary index whilst decreases ordinary one in the guide region. The modal analysis shows, at wavelength of 632.8 nm, the fields of one TE and three TM modes are well restricted in the guiding region, which means the formation of non-leaky waveguide in the crystal. The damping coefficients of the waveguide are 0.6 and 1.6 cm−1 for ordinary and extraordinary polarized light at 632.8 nm, respectively.  相似文献   

8.
Single crystalline ZnO films were grown on c-plane GaN/sapphire (0 0 0 1) substrates by molecular beam epitaxy. Cr+ ions were implanted into the ZnO films with three different doses, i.e., 1 × 1014, 5 × 1015, and 3 × 1016 cm−2. The implantation energy was 150 keV. Thermal treatment was carried out at 800 °C for 30 s in a rapid thermal annealing oven in flowing nitrogen. X-ray diffraction (XRD), atomic force microscopy, Raman measurements, transmission electron microscopy and superconducting quantum interference device were used to characterize the ZnO films. The results showed that thermal annealing relaxed the stress in the Cr+ ions implanted samples and the implantation-induced damage was partly recovered by means of the proper annealing treatment. Transmission electron microscopy measurements indicated that the first five monolayers of ZnO rotated an angle off the [0 0 0 1]-axis of the GaN in the interfacial layer. The magnetic-field dependence of magnetization of annealed ZnO:Cr showed ferromagnetic behavior at room temperature.  相似文献   

9.
Single crystal Al2O3 samples were implanted with 45 keV Cu ion implantation at a dose of 1 × 1017 ions/cm2, and then subjected to furnace annealing in vacuum or with a flow of oxygen gas. Various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction spectroscopy and atomic force microscopy, have been used to investigate formation of Cu NPs and their evolution. Our results clearly show that the evolution of Cu NPs depends strongly on annealing atmosphere in the temperature range up to 600 °C. Annealing in vacuum only gives rise to a slight change in the size of Cu NPs. No evidence for oxidization of Cu NPs has been revealed. Remarkable modifications in Cu NPs, including the size increase and the effective transformation into CuO NPs, have been observed for the samples annealed at oxygen atmosphere. The results have been tentatively discussed in combination with the role of oxygen from atmosphere in diffusion of Cu atoms towards the surface and its interactions with Cu NPs during annealing.  相似文献   

10.
Oxygen and hydrogen accumulations at buried implantation-damage layers were studied after post-implant-ation annealing of hydrogen- and helium-implanted Czochralski (Cz) silicon. Hydrogen implantation was carried out at energies E=180 keV and doses D=2.7×1016 cm-2, and helium implantation at E=300 keV and D=1016 cm-2. For comparison hydrogen implantation was also done into float-zone (Fz) silicon wafers. Post-implantation annealing at 1000 °C was done either in H2 or N2 atmosphere. Hydrogen and oxygen concentration profiles were measured by secondary ion mass spectroscopy (SIMS). It is shown that the ambient during annealing plays a significant role for the gettering of oxygen at buried implantation-damage layers in Cz Si. For both hydrogen and helium implantations, the buried defect layers act as rather effective getter centers for oxygen and hydrogen at appropriate conditions. The more efficient gettering of oxygen during post-implantation annealing in a hydrogen ambient can be attributed to a hydrogen-enhanced diffusion of oxygen towards the buried implantation-damage layers, where a fast oxygen accumulation occurs. Oxygen concentrations well above 1019 cm-3 can be obtained. From the comparison of measurements on hydrogen-implanted Cz Si and Fz Si one can conclude that at the buried defect layers hydrogen is most probably trapped by voids and/or may be stable as immobile molecular hydrogen species. Therefore hydrogen accumulated at the defect layers, and is preserved even after high-temperature annealing at 1000 °C. Received: 3 July 2000 / Accepted: 11 July 2000 / Published online: 22 November 2000  相似文献   

11.
Defect engineering for SiO2 precipitation is investigated using He-ion implantation as the first stage of separation by implanted oxygen (SIMOX). Cavities axe created in Si by implantation with helium ions. After thermal annealing at different temperatures, the sample is implanted with 120 keV 8.0 ×1016 cm 2 0 ions. The Q ion energy is chosen such that the peak of the concentration distribution is centred at the cavity band. For comparison, another sample is implanted with O ions alone. Cross-sectionM transmission electron microscopy (XTEM), Fourier transform infrared absorbance spectrometry (FTIR) and atomic force microscopy (AFM) measurements are used to investigate the samples. The results show that a narrow nano-cavity layer is found to be excellent nucleation sites that effectively assisted SiO2 formation and released crystal lattice strain associated with silicon oxidation.  相似文献   

12.
Optical channel waveguides were fabricated in KTiOPO4 crystal by He+-ion implantation using photoresist masks with wedged-shaped cross sections. Semi-closed barrier walls with reduced refractive indices inside the crystal constructed the enclosed regions to be channel waveguides with trapezoidal-shaped cross sections. The m-line as well as end-fire coupling arrangements were performed to characterize the waveguides with light at wavelength of 632.8 nm. The propagation loss of the channel waveguides was determined to be as low as ∼2 dB/cm after simple post-irradiation thermal annealing treatment in air.  相似文献   

13.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

14.
In this experiment, nitrogen ions were implanted into CZ-silicon wafer at 100 keV at room temperature with the fluence of 5 × 1015 N2+/cm2, followed by rapid thermal processing (RTP) at different temperatures. The single detector Doppler broadening and coincidence Doppler broadening measurements on slow positron beam were carried out to characterize the defects in the as-implanted silicon and RTP-treated samples. It is found that both nitrogen-vacancy complexes (N-Vsi) and oxygen-vacancy complexes (O-Vsi) produced by nitrogen implantation diffuse back to the sample surface upon annealing. But the N-Vsi and the O-Vsi complete with each other and give a summed effect on positron annihilation characteristics. It is shown that the N-Vsi win out the O-Vsi in as-implanted sample and by RTP at 650 °C, 750 °C, which make the S-parameter increase; O-Vsi plays a dominant role after annealing above 850 °C, which makes the S parameter decrease.  相似文献   

15.
Titanium and zirconia are bioinert materials lacking bioactivity. In this work, surface modification of the two typical biomaterials is conducted by Mg-ion-implantation using a MEVVA ion source in an attempt to increase their bioactivity. Mg ions were implanted into zirconia and titanium with fluences ranging from 1 × 1017 to 3 × 1017 ions/cm2 at 40 keV. The Mg-implanted samples, as well as control (unimplanted) samples, were immersed in SBF for 7 days and then removed to identify the presence of calcium and phosphate (Ca-P) coatings and to characterize their morphology and structure by SEM, XRD, and FT-IR. SEM observations confirm that globular aggregates are formed on the surfaces of the Mg-implanted zirconia and titanium while no precipitates are observed on the control samples. XRD and FT-IR analyses reveal that the deposits are carbonated hydroxyapatite (HAp). Our experimental results demonstrate that Mg-implantation improves the bioactivity of zirconia and titanium. Further, it is found that the degree of bioactivity is adjustable by the ion dose. Mechanisms are proposed to interpret the improvement of bioactivity as a result of Mg implantation and the difference in bioactivity between zirconia and titanium.  相似文献   

16.
We report on the low energy oxygen implantation induced improvement in crystallinity and optical properties of surface modified ZnO single crystals. Undoped ZnO (0 0 0 1) single crystal wafers are implanted with 100 keV oxygen ions at a dose of 5 × 1013 and 5 × 1014 cm−2 and subsequently annealed at 500 and 600 °C in oxygen ambient. The as-implanted and annealed ZnO wafers are studied by Rutherford back scattering spectrometry (RBS), channeling, Raman, photoluminescence (PL), and Fourier transform infrared spectroscopy (FTIR). Channeling studies show a relatively high χmin (>20%) in the virgin ZnO wafer. After implantation and two-step annealing, RBS studies show improved crystallinity. Raman line width analysis for the mode indicates reduction in strain in the annealed samples as compared to the virgin ZnO wafer. As-implanted samples show drastic quenching of the near band-edge (NBE) PL band due to defects created by the implantation. However, after two-step annealing, the low-dose implanted sample show a five-fold increase in intensity ratio of NBE band (376 nm) to defect related broad band (∼530 nm) at room temperature. Implantation induced changes in the composition and improved crystallinity in the near surface region is accounted for the major improvement in the PL emission.  相似文献   

17.
The optical reflectivity (both specular and off-specular) of poly(methyl methacrylate) (PMMA) implanted with silicon ions (Si+) at energy of 50 keV, is studied in the spectral range 0.25-25 μm. The effect from the Si+ implantation on the reflectivity of two PMMA materials is examined in the dose range from 1014 to 1017 ions/cm2 and is linked to the structure formed in this ion implanted plastic. As compared to the pristine PMMA, an enhancement of the reflectivity of Si+ implanted PMMA is observed, that is attributed to the modification of the subsurface region of PMMA upon the ion implantation. The ion-produced subsurface organic interface is also probed by laser-induced thermo-lens.  相似文献   

18.
Comprehensive and systematic optical activation studies of Si-implanted GaN grown on sapphire substrates have been made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 to 5×1015 cm−2 at room temperature. The samples were proximity cap annealed from 1250 to 1350 °C with a 500-Å-thick AlN cap in a nitrogen environment. The results of photoluminescence measurements made at 3 K show a very sharp neutral-donor-bound exciton peak along with a sharp donor-acceptor pair peak after annealing at 1350 °C for 20 s, indicating excellent implantation damage recovery. The results also indicate the AlN cap protected the implanted GaN layer very well during high temperature annealing without creating any significant anneal-induced damage. This observation is consistent with the electrical activation results for these samples.  相似文献   

19.
In the present paper we report structural and photoluminescence (PL) results from samples obtained by Si implantation into stoichiometric silicon nitride (Si3N4) films. The Si excess was introduced in the matrix by 170 keV Si implantation performed at different temperatures with a fluence of Φ=1×1017 Si/cm2. The annealing temperature was varied between 350 and 900 °C in order to form the Si precipitates. PL measurements, with a 488 nm Ar laser as an excitation source, show two superimposed broad PL bands centered around 760 and 900 nm. The maximum PL yield is achieved for the samples annealed at 475 °C. Transmission electron microscopy (TEM) measurements show the formation of amorphous nanoclusters and their evolution with the annealing temperature.  相似文献   

20.
Silicon carbide (SiC) films were synthesized by combined metal vapor vacuum arc (MEVVA) ion implantation with ion beam assisted deposition (IBAD) techniques. Carbon ions with 40 keV energy were implanted into Si(1 0 0) substrates at ion fluence of 5 × 1016 ions/cm2. Then silicon and carbon atoms were co-sputtered on the Si(1 0 0) substrate surface, at the same time the samples underwent assistant Ar-ion irradiation at 20 keV energy. A group of samples with substrate temperatures ranging from 400 to 600 °C were used to analyze the effect of temperature on formation of the SiC film. Influence of the assistant Ar-ion irradiation was also investigated. The structure, morphology and mechanical properties of the deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindentation, respectively. The bond configurations were obtained from IR absorption and Raman spectroscopy. The experimental results indicate that microcrystalline SiC films were synthesized at 600 °C. The substrate temperature and assistant Ar-ion irradiation played a key role in the process. The assistant Ar-ion irradiation also helps increasing the nanohardness and bulk modulus of the SiC films. The best values of nanohardness and bulk modulus were 24.1 and 282.6 GPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号