首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The demand of high-purity plasmid DNA (pDNA) for gene-therapy and genetic vaccination is still increasing. For the large scale production of pharmaceutical grade plasmids generic and economic purification processes are needed. Most of the current processes for pDNA production use at least one chromatography step, which always constitutes as the key-step in the purification sequence. Monolithic chromatographic supports are an alternative to conventional supports due to their excellent mass transfer properties and their high binding capacity for pDNA. Anion-exchange chromatography is the most popular chromatography method for plasmid separation, since polynucleotides are negatively charged independent of the buffer conditions. For the implementation of a monolith-based anion exchange step into a pDNA purification process detailed screening experiments were performed. These studies included supports, ligand-types and ligand-densities and optimization of resolution and productivity. For this purpose model plasmids with a size of 4.3 and 6.9 kilo base pairs (kbp) were used. It could be shown, that up-scaling to the production scale using 800 ml CIM Convective Interaction Media radial flow monoliths is possible under low pressure conditions. CIM DEAE was successfully implemented as intermediate step of the cGMP pDNA manufacturing process. Starting from 2001 fermentation aliquots pilot scale purification runs were performed in order to prove scale-up and to predict further up-scaling to 8 1 tube monolithic columns. The analytical results obtained from these runs confirmed suitability for pharmaceutical applications.  相似文献   

2.
The use of histidine-agarose chromatography in the purification of supercoiled (sc) plasmid DNA (pDNA) from Escherichia coli lysates has been reported recently. In the current work we describe a set of breakthrough experiments which were designed to study the effect of parameters such as flow-rate, temperature, concentration and conformation on the dynamic binding capacity of pDNA to the histidine support. One of the most striking results shows that the dynamic binding capacity for sc pDNA decreases linearly from 250.8 to 192.0 microg sc pDNA/mL when the temperature is varied from 5 to 24 degrees C. This behaviour was attributed to temperature-induced, pre-denaturation conformational changes which promote the removal of negative superhelical turns in sc pDNA molecules and decrease the interaction of DNA bases with the histidine ligands. The capacity for sc pDNA was highly improved when using feeds with higher pDNA concentrations, a phenomenon which was attributed to the fact that pDNA molecules in more concentrated solutions are significantly compressed. A maximum capacity of 530.0 microg pDNA/mL gel was obtained when using a 125 microg/mL pDNA feed at 1 mL/min and 5 degrees C, a figure which is comparable to the plasmid capacity values published for other chromatographic supports. Finally, a more than 2-fold increase in capacity was obtained when changing from open circular to sc pDNA solutions. Overall, the results obtained provide valuable information for the future development and implementation of histidine chromatography in the process scale purification of pDNA.  相似文献   

3.
The growing demand on plasmid DNA (pDNA) manufacture for therapeutic applications requires a final product with higher quality and quantity, spending the least time. Most of the current processes for pDNA production use at least one chromatographic step, which often constitutes a key-step in the purification sequence. Monolithic stationary phases are new alternatives to the conventional matrices, which offer fast separation of pDNA due to their excellent mass transfer properties and their high binding capacity for large molecules, as pDNA. However, the efficient recovery of pure pDNA focuses on a suitable balance of the feedstock, adsorbent and mobile phase properties. To satisfy the increasing demand for pharmaceutical grade plasmids, we developed a novel downstream process which overcomes the bottlenecks of common lab-scale techniques while complying with all regulatory requirements. This work reports an integrative approach using the carbonyldiimidazole monolith to efficiently purify the supercoiled (sc) pDNA active conformation from other plasmid topologies and Escherichia coli impurities present in a clarified lysate. The monolith specificity and selectivity was also assessed by performing experiments with plasmids of several sizes of 2.7, 6.05 and 7.4 kilo base pairs (kbp), verifying the applicability to purify different plasmids. Hence, the process yield of the pDNA purification step using the CDI monolith was 89%, with an extremely reduced level of impurities (endotoxins and gDNA), which was reflected in good transfection experiments of the sc plasmid DNA sample. Overall, the analytical results and transfection studies performed with the pDNA sample purified with this monolithic enabling technology, confirmed the suitability of this pDNA to be used in pharmaceutical applications.  相似文献   

4.
New interesting strategies for plasmid DNA (pDNA) purification were designed, exploiting affinity interactions between amino acids and nucleic acids. The potential application of arginine-based chromatography to purify pDNA has been recently described in our work; however, to achieve higher efficiency and selectivity in arginine affinity chromatography, it is essential to characterize the behaviour of binding/elution of supercoiled (sc) isoforms. In this study, two different strategies based on increased sodium chloride (225-250 mm) or arginine (20-70 mm) stepwise gradients are described to purify sc isoforms. Thus, it was proved that well-defined binding/elution conditions are crucial to enhance the purification performance, resulting in an improvement of the final plasmids yields and transfection efficiency, as this could represent a significant impact on therapeutic applications of the purified sc isoform.  相似文献   

5.
Chromatography is one of the key operations in the downstream processing of plasmid DNA (pDNA). However, the increased demand for highly purified pDNA experienced in recent years has made clear the need for alternative processes capable of retaining the advantages of conventional chromatography, such as selectivity, while providing increased throughput at a lower cost. The work presented in this article outlines the development and optimization of an alternative hydrophobic interaction membrane chromatography process for the purification of pDNA. The studies included the modification of functionalized membrane supports with a linear alkyl chain ligand and the testing of chromatographic performance of these membranes. Three modification procedures were tested and the membranes were screened for their capacity and selectivity. The modified membranes could separate the model plasmid pVAX1‐LacZ (6050 bp) from impurities in clarified Escherichia coli cell lysates (specifically RNA), with good resolution. Subsequent optimization of elution profiles with the best‐performing modified membrane, resulted in a high purification factor of 4.7, competitive with its bead process counterpart, and a plasmid yield of 73%.  相似文献   

6.
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification.  相似文献   

7.
The use of therapeutics based on plasmid DNA (pDNA) relies on procedures that efficiently produce and purify the supercoiled (sc) plasmid isoform. Several chromatographic methods have been applied for the sc plasmid purification, but with most of them it is not possible to obtain the required purity degree and the majority of the supports used present low capacity to bind the plasmid molecules. However, the chromatographic monolithic supports are an interesting alternative to conventional supports due to their excellent mass transfer properties and their high binding capacity for pDNA. The separation of pDNA isoforms, using short non-grafted monolithic column with CarbonylDiImidazole (CDI) functional groups, is described in the current work. The effect of different flow rates on plasmid isoforms separation was also verified. Several breakthrough experiments were designed to study the effect of different parameters such as pDNA topology and concentration as well as flow rate on the monolithic support binding capacity. One of the most striking results is related to the specific recognition of the sc isoform by this CDI monolith, without flow rate dependence. Additionally, the binding capacity has been found to be significantly higher for sc plasmid, probably because of its compact structure, being also improved when using feedstock with increased plasmid concentrations and decreased linear velocity. In fact, this new monolithic support arises as a powerful instrument on the sc pDNA purification for further clinical applications.  相似文献   

8.
This paper summarizes the critical examination of the hydrodynamic performance of the NBG expanded bed contactor operated with streamline-DEAE adsorbent under various operating conditions for expanded bed adsorption of plasmid DNA nanoparticles from alkaline lysate. The purification process is not RNase-free. In this study, a rapid and efficient scaleable purification protocol obtaining, plasmid DNA nanoparticles (average size of 40 nm) with a high purity level for use as therapeutic agent in customized NBG expanded bed columns was developed. This technique allows efficient levels of binding to the column media and vector purification without centrifugation or filtration steps. Residence time distribution (RTD) studies were exploited to achieve the optimal condition of plasmid DNA nanoparticle (pDNA) recovery upon anion exchange adsorbent in this contactor. In addition, the purification experiments were carried out in the expanded bed columns with settle bed height of 6.0 ± 0.2 cm. NaCl gradient elution enabled the isolation of supercoiled plasmid from low-Mr RNA, cDNA and plasmid variants. Subsequently dynamic binding capacity of the adsorbent was calculated while these values decreased with increase in flow velocity. Moreover, the effect of pH upon the performance of this recovery process and the feedstock volume upon the expanded bed anion exchange purification was investigated. The results demonstrated that separation of low-Mr RNA from plasmid DNA isoforms in the range of pH between 5.5 and 7.5 is achievable in this column. The yield of recovery of pDNA in optimal condition was higher than 88.51% which was a superior result in one-pass frontal chromatography. The generic application of simple customized NBG expanded bed column and its potential for the purification and recovery of plasmid DNA as a nanoparticulate bioproduct is strongly discussed.  相似文献   

9.
Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cell-mediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.  相似文献   

10.
The current study explores the possibility of using a polyethyleneglycol(PEG)-ammonium sulphate aqueous two-phase system (ATPS) as an early step in a process for the purification of a model 6.1 kbp plasmid DNA (pDNA) vector. Neutralised alkaline lysates were fed directly to ATPS. Conditions were selected to direct pDNA towards the salt-rich bottom phase, so that this stream could be subsequently processed by hydrophobic interaction chromatography (HIC). Screening of the best conditions for ATPS extraction was performed using three PEG molecular weights (300, 400 and 600) and varying the tie-line length, phase volume ratio and lysate load. For a 20% (w/w) lysate load, the best results were obtained with PEG 600 using the shortest tie-line (38.16%, w/w). By further manipulating the system composition along this tie-line in order to obtain a top/bottom phase volume ratio of 9.3 (35%, w/w PEG 600, 6%, w/w NH4)2 SO4), it was possible to recover 100% of pDNA in the bottom phase with a three-fold increase in concentration. Further increase in the lysate load up to 40% (w/w) with this system resulted in a eight-fold increase in pDNA concentration, but with a yield loss of 15%. The ATPS extraction was integrated with HIC and the overall process compared with a previously defined process that uses sequential precipitations with iso-propanol and ammonium sulphate prior to HIC. Although the final yield is lower in the ATPS-based process the purity grade of the final pDNA product is higher. This shows that it is possible to substitute the time-consuming two-step precipitation procedure by a simple ATPS extraction.  相似文献   

11.
Separation of negatively charged molecules, such as plasmid DNA (pDNA), RNA and endotoxin forms a bottleneck for the development of pDNA vaccine production process. The use of affinity interactions of transition metal ions with these molecules may provide an ideal separation methodology. In this study, the binding behaviour of pDNA, RNA and endotoxin to transition metal ions, either in immobilised or free form, was investigated. Transition metal ions: Cu2+, Ni2+, Zn2+, Co2+ and Fe3+, typically employed in the immobilised metal affinity chromatography (IMAC), showed very different binding behaviour depending on the type of metal ions and their existing state, i.e. immobilised or free. In the alkaline cell lysate, pDNA showed no binding to any of the IMAC chemistries tested whereas RNA interacted significantly with Cu2+-iminodiacetic acid (IDA) and Ni2+-IDA but showed no substantial binding to the rest of the IMAC chemistries. pDNA and RNA, however, interacted to varying degrees with free metal ions in the solution. The greatest selectivity in terms of pDNA and RNA separation was achieved with Zn2+ which enabled almost full precipitation of RNA while keeping pDNA soluble. For both immobilised and free metal ions, ionic strength of solution affected the metal ion-nucleic acid interaction significantly. Endotoxin, being more flexible, was able to interact better with the immobilised metal ions than the nucleic acids and showed binding to all the IMAC chemistries. The specific interactions of immobilised and/or free metal ions with pDNA, RNA and endotoxin showed a good potential, by selectively removing RNA and endotoxin at high efficiency, to develop a simplified pDNA purification process with improved process economics.  相似文献   

12.
Plasmid DNA (pDNA) is purified directly from alkaline lysis-derived Escherichia coli (E. coli) lysates by phenyl boronate (PB) chromatography. The method explores the ability of PB ligands to bind covalently, but reversibly, to cis-diol-containing impurities like RNA and lipopolysaccharides (LPS), leaving pDNA in solution. In spite of this specificity, cis-diol free species like proteins and genomic DNA (gDNA) are also removed. This is a major advantage since the process is designed to keep the target pDNA from binding. The focus of this paper is on the study of the secondary interactions between the impurities (RNA, gDNA, proteins, LPS) in a pDNA-containing lysate and 3-amino PB controlled pore glass (CPG) matrices. Runs were designed to evaluate the role of adsorption buffer composition, feed type (pH, salt content), CPG matrix and sample pretreatment (RNase A, isopropanol precipitation). Water was chosen as the adsorption buffer over MgCl(2) solutions since it maximised pDNA yield (96.2±4.9%) and protein removal (61.3±3.0%), while providing for a substantial removal of RNA (65.5±3.5%) and gDNA (44.7±14.1%). Although the use of pH 3.5 maximised removal of impurities (~75%), the best compromise between plasmid yield (~96%) and RNA clearance (~60-70%) was obtained for a pH of 5.2. Plasmid yield was maximal (>96%) when the concentration of acetate and potassium ions in the incoming lysate feed were 1.7 M and 1.0 M, respectively. The pre-treatment of lysates with RNase A deteriorated the performance since the resulting oligoribonucleotides lack the cis-diol group at their 3' termini. Overall, the results support the idea that charge transfer interactions between the boron atom at acidic pH and electron donor groups in the aromatic bases of nucleic acids and side residues of proteins are responsible for the non-specific removal of gDNA, RNA and proteins.  相似文献   

13.
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.  相似文献   

14.
15.
Chromatographic techniques are used in the purification step of human recombinant erythropoietin production process to obtain a reliable product with high purity. Anion-exchange chromatography supports have proved high efficient in removing contaminants such as DNA. For that reason, the DNA removal was determined by spike studies, on three anion-exchange chromatographic supports: gel, membrane, and monolithic column, which is used in intermediate purification stage. This study showed that membrane and monolith columns have very good results in the removal of contaminants at this step. Log removal values (LRV) greater than 3.5 were obtained from DNA spike clearance studies. Monolithic column was determined as the best technological proposal, with more than 4 LRV, 7.72?mg DNA per milliliter of adsorbent and 85% protein recovery in nonspike run. The results of this study may be used as a guide in the selection of commercially available chromatography supports for intermediate purification steps in recombinant protein production.  相似文献   

16.
17.
The affinity isolation of pre-purified plasmid DNA (pDNA) from model buffer solutions using native and poly(ethylene glycol) (PEG) derivatized zinc finger-GST (Glutathione-S-Transferase) fusion protein was examined in PEG-dextran (DEX) aqueous two-phase systems (ATPSs). In the absence of pDNA, partitioning of unbound PEGylated fusion protein into the PEG-rich phase was confirmed with 97.5% of the PEGylated fusion protein being detected in the PEG phase of a PEG 600-DEX 40 ATPS. This represents a 1322-fold increase in the protein partition coefficient in comparison to the non-PEGylated protein (Kc = 0.013). In the presence of pDNA containing a specific oligonucleotide recognition sequence, the zinc finger moiety of the PEGylated fusion protein bound to the plasmid and steered the complex to the PEG-rich phase. An increase in the proportion of pDNA that partitioned to the PEG-rich phase was observed as the concentration of PEGylated fusion protein was increased. Partitioning of the bound complex occurred to such an extent that no DNA was detected by the picogreen assay in the dextran phase. It was also possible to partition pDNA using a non-PEGylated (native) zinc finger-GST fusion protein in a PEG 1000-DEX 500 ATPS. In this case the native ligand accumulated mainly in the PEG phase. These results indicate good prospects for the design of new plasmid DNA purification methods using fusion proteins as affinity ligands.  相似文献   

18.
The formation of DNA adducts by genotoxic agents is an early event in cancer development, and it may lead to gene mutations, thereby initiating tumor development. The measurement of DNA adducts can provide critical information about the genotoxic potential of a chemical and its mechanism of carcinogenesis. In recent decades, liquid chromatography coupled with mass spectrometry has become the most important technique for analyzing DNA adducts. The improvements in resolution achievable with new chromatographic separation techniques coupled with the high specificity and sensitivity and wide dynamic range of new mass spectrometry systems have been used for both qualitative and quantitative analyses of DNA adducts. This review discusses the challenges in qualitative and quantitative analyses of DNA adducts by liquid chromatography coupled with mass spectrometry and highlights recent developments towards overcoming the limitations of liquid chromatography coupled with mass spectrometry methods. The key steps and new solutions, such as sample preparation, mass spectrometry fragmentation, and method validation, are summarized. In addition, the fundamental principles and latest advances in DNA adductomic approaches are reviewed.  相似文献   

19.
In the last few years, our research group has focused on the design and development of plasmid DNA (pDNA) based systems as devices to be used therapeutically in the biomedical field. Biocompatible macro and micro plasmid DNA gels were prepared by a cross-linking reaction. For the first time, the pDNA gels have been investigated with respect to their swelling in aqueous solution containing different additives. Furthermore, we clarified the fundamental and basic aspects of the solute release mechanism from pDNA hydrogels and the significance of this information is enormous as a basic tool for the formulation of pDNA carriers for drug/gene delivery applications. The co-delivery of a specific gene and anticancer drugs, combining chemical and gene therapies in the treatment of cancer was the main challenge of our research. Significant progresses have been made with a new p53 encoding pDNA microgel that is suitable for the loading and release of pDNA and doxorubicin. This represents a strong valuable finding in the strategic development of systems to improve cancer cure through the synergetic effect of chemical and gene therapy.  相似文献   

20.
The development of polymers with low toxicity and efficient gene delivery remains a significant barrier of nonviral gene therapy. Modification and tuning of chemical structures of carriers is an attractive strategy for efficient nucleic acid delivery. Here, polyplexes consisting of plasmid DNA (pDNA) and dodecylated or non‐dodecylated polysuccinimide (PSI)‐based polycations are designed, and their transfection ability into HeLa cells is investigated by green fluorescent protein (GFP) expressing cells quantification. All cationic polymers show lower cytotoxicity than those of branched polyethyleneimine (bPEI). PSI and bPEI‐based polyplexes have comparable physicochemical properties such as size and charge. Interestingly, a strong interaction between dodecylated polycations and pDNA caused by the hydrophobic moiety is observed in dodecylated PSI derivatives. Moreover, the decrease of GFP expression is associated with lower dissociation of pDNA from polyplexes according to the heparin displacement assay. Besides, a hydrophobization of PSI cationic derivatives with dodecyl side chains can modulate the integrity of polyplexes by hydrophobic interactions, increasing the binding between the polymer and the DNA. These results provide useful information for designing polyplexes with lower toxicity and greater stability and transfection performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号