首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
A combined experimental and trajectory study of vibrationally state-selected NO2+ collisions with Ne, Ar, Kr, and Xe is presented. Ne, Ar, and Kr are similar in that only dissociation to the excited singlet oxygen channel is observed; however, the appearance energies vary by approximately 4 eV between the three rare gases, and the variation is nonmonotonic in rare gas mass. Xe behaves quite differently, allowing efficient access to the ground triplet state dissociation channel. For all four rare gases there are strong effects of NO2+ vibrational excitation that extend over the entire collision energy range, implying that vibration influences the efficiency of collision to internal energy conversion. Bending excitation is more efficient than stretching; however, bending angular momentum partially counters the enhancement. Direct dynamics trajectories for NO2+ + Kr reproduce both the collision energy and vibrational state effects observed experimentally and reveal that intracomplex charge transfer is critical for the efficient energy transfer needed to drive dissociation. The strong vibrational effects can be rationalized in terms of bending, and to a lesser extent, stretching distortion enhancing transition to the Kr+ -NO2 charge state.  相似文献   

2.
A flowing afterglow-tandem mass spectrometer (FA-TMS) was used to study a series of C5 unsaturated alcohols and isoprene. The analytical procedure was validated through collision induced dissociation (CID) experiments on proton hydrates. In the FA, reagent H3O+ ions were used to chemically ionize the alcohols under study and isoprene. Chemical ionization (CI) by H3O+ is widely used, especially in PTR-MS instruments, and produces a main peak at m/z 69 for all studied compounds, implying the impossibility to distinguish them by a simple quadrupole mass filter. The CID of these ions at m/z 69 resulted in daughter ions with the same masses but with different intensities depending on the organic compound, the collision energy and the Ar target gas pressure in the collision cell. From these observations, pentenols were easily distinguished from methylbutenols and 3-methyl-3-buten-1-ol from the other compounds. CID experiments were also performed on the protonated alcohol, which is only a stable ion for 1-penten-3-ol, 2-methyl-3-buten-2-ol and 3-methyl-3-buten-1-ol, showing different CID patterns as a function of the collision energy. The coupling between a FA reactor and a TMS has proven to be a valuable approach to identify C5 unsaturated alcohols and isoprene.  相似文献   

3.
The distorted-wave Born approximation (DW-BA) is discussed and samples of calculations are presented for ionization of the 2p inner shell of Ar, the 5p, 5s and 4d shells of Xe, and for ionization of He in asymmetric perpendicular plane geometry. Agreement with measurements of inner shell ionization of Ar is excellent. It is pointed out that triple differential cross sections for ionization of heavy atoms can exhibit much structure, which presents a challenge to both theory and experiment. Particular cases of 5s and 4d ionization of Xe are given as examples of situations worthy of experimental investigation. Comparison is made with very recent measurements of ionization of He in asymmetric perpendicular plane geometry. In agreement with experiment, DWBA shows at all incident energies a single main peak at φ=180°, where φ is the angle between the outgoing electrons. It is demonstrated that at high energies this peak arises from a double collison mechanism. This contrasts with energy-sharing ionization into the perpendicular plane where the double collision mechanism, dominant at high energies, gives a peak at φ=90°, and where with reducing energy this peak is replaced by one at φ=180° coming from the single collision mechanism. Suggestions are made for further experiments.  相似文献   

4.
Hang W  Lewis C  Majidi V 《The Analyst》2003,128(3):273-280
Construction details and performance evaluation of a radio frequency (rf)-only quadrupole ion guide for use with an electrospray ionization time-of-flight mass spectrometer is presented in this paper. Angiotensin III and cytochrome c were used in these experiments to investigate the ion transmission properties of the rf-only quadrupole for different m/z species. In addition, influence of ion kinetic energies along with the characteristic fragmentation due to collision induced dissociation (CID) were studied. These experiments demonstrate that the transmissions of different m/z ions were not only dependent on the frequency and magnitude of the rf waveform, which is similar to a high vacuum rf-only quadrupole ion guide, but also on the pressure inside the quadrupole chamber. For the pressure range tested, low m/z ions are better focused with increasing pressure. As expected, transmission of ions are subject to space charge limitations when significant numbers of ions are focused on the axis of the quadrupole. It is also observed that CID results are related to transverse motion and longitude motion of ions inside the quadrupole region. Consequently, CID is useful for fragmentation of linear peptides and it is not effective (in present configuration) for large bulky proteins. The kinetic energy of ions that enter the repelling region of the TOFMS is ultimately determined by the ensemble effect resulting from the dc bias potential of the quadrupole (the dominant factor), skimmer-2, pressure inside the quadrupole chamber, and jet expansion. While this system is tested with an ESI source, the operational principle and design criteria are directly applicable for improving other atmospheric pressure ionization sources with time-of-flight mass analyzers such as an inductively coupled plasma ion source.  相似文献   

5.
Chemical ionization of two 1,4-dihydropyridines, lacidipine and its Z-isomer, and their corresponding pyridines in three different reagent gases and the collision-induced dissociation (CID) of their respective mass-selected protonated molecular ions in the collision energy range 10–200 eV were performed on a multiple quadrupole instrument. The weakness of the Breasted acid NH4+ as a protonating agent is clearly manifested in one of the ammonia positive-ion chemical ionization (CI+) mass spectra which displays the addition ion, [M + NH4]+, as the favoured reaction channel. The stereochemistry of the precursor molecules, the exothermicity of the protonation process and the threshold of certain dissociation channels as a function of the collision energy are among the arguments invoked to explain some of the observed differences between the CI+ mass spectra and the CID data of the different isomers investigated. In an attempt to present a more comprehensive study, some high-performance liquid chromatographic retention times and resolutions are also given.  相似文献   

6.
Collision-induced dissociation (CID) of protonated ammonia-alcohol and water-alcohol heteroclusters was studied using a triple quadrupole mass spectrometer with a corona discharge atmospheric pressure ionization source. CID results suggested that the ammonia-alcohol clusters had NH: at the core of the cluster and that hydrogen-bonded alcohol molecules solvated this central ion. In contrast, CID results in water-alcohol clusters showed that water loss was strongly favored over alcohol loss and that there was a preference for the charge to reside on an alcohol molecule. The results also indicated that a loose chain of hydrogen-bonded molecules was formed in the water-alcohol clusters and that there appeared to be no rigid protonation site or a fixed central ion. (J Am Soc Mass  相似文献   

7.
Simultaneous multiple-electron capture and multiple ionization is studied for collisions of highly stripped ionsA q+ with rare gas atomsB=He, Ne, Ar, Kr and Xe. At a specific energy of 1.4 MeV/u coincidence measurements were conducted distinguishing between pure ionization, stripping and capture of up to four electrons by projectiles in charge states fromq=6 up toq=48. The coincident charge-state distributions of target recoil ionsB i+ range fromi=1 up toi=19 (in few cases). For highly charged projectiles the relative fractions of recoil ions for concomitant electron capture and ionization are found to be nearly independent of projectile charge or species. Average charge states 〈i〉 of the recoil ions produced by loss respectively capture ofk electrons (k=?2, ?1, 0, 1, 2, 3, 4) from/into the projectile ion were determined. Their systematic dependences onk, on the target atomic number and the projectile ion charge are discussed. A calculation of partial cross sections for multi-electron collision processes in the He target atoms using unitarized first order perturbation theory for impact parameter dependent probabilities and an independent-electron picture is presented and discussed on the basis of the experimental data.  相似文献   

8.
Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.  相似文献   

9.
Ion activation methods for tandem mass spectrometry   总被引:7,自引:0,他引:7  
This tutorial presents the most common ion activation techniques employed in tandem mass spectrometry. In-source fragmentation and metastable ion decompositions, as well as the general theory of unimolecular dissociations of ions, are initially discussed. This is followed by tandem mass spectrometry, which implies that the activation of ions is distinct from the ionization step, and that the precursor and product ions are both characterized independently by their mass/charge ratios. In collision-induced dissociation (CID), activation of the selected ions occurs by collision(s) with neutral gas molecules in a collision cell. This experiment can be done at high (keV) collision energies, using tandem sector and time-of-flight instruments, or at low (eV range) energies, in tandem quadrupole and ion trapping instruments. It can be performed using either single or multiple collisions with a selected gas and each of these factors influences the distribution of internal energy that the activated ion will possess. While CID remains the most common ion activation technique employed in analytical laboratories today, several new methods have become increasingly useful for specific applications. More recent techniques are examined and their differences, advantages and disadvantages are described in comparison with CID. Collisional activation upon impact of precursor ions on solid surfaces, surface-induced dissociation (SID), is gaining importance as an alternative to gas targets and has been implemented in several different types of mass spectrometers. Furthermore, unique fragmentation mechanisms of multiply-charged species can be studied by electron-capture dissociation (ECD). The ECD technique has been recognized as an efficient means to study non-covalent interactions and to gain sequence information in proteomics applications. Trapping instruments, such as quadrupole ion traps and Fourier transform ion cyclotron resonance instruments, are particularly useful for the photoactivation of ions, specifically for fragmentation of precursor ions by infrared multiphoton dissociation (IRMPD). IRMPD is a non-selective activation method and usually yields rich fragmentation spectra. Lastly, blackbody infrared radiative dissociation is presented with a focus on determining activation energies and other important parameters for the characterization of fragmentation pathways. The individual methods are presented so as to facilitate the understanding of each mechanism of activation and their particular advantages and representative applications.  相似文献   

10.
A study of factors influencing the collision-induced dissociation (CID) rate of strongly bound diatomic ions effected via resonance excitation in a quadrupole ion trap is presented. From these studies, an approach to measuring the CID rates is described wherein product ion recovery is optimized and the effect of competitive processes (e.g., parent ion ejection and product ion reactions) on rate measurements are prevented from influencing rate measurements. Tantalum oxide ions (dissociation ENERGY = 8.2 eV), used as a model system, were formed via reactions of glow discharge generated Ta+ ions with residual gases in the ion trap. Neon (0.5 mtorr) was found to be a more favorable target gas for the dissociation of TaO+ than He and Ar, but collisional activation of TaO+ ions in neon during ion isolation by mass selective instability necessitated ion cooling prior to dissociation. A 25 ms delay time at qz = 0.2 allowed for kinetic cooling of stored TaO+ ions and enabled precise dissociation rate measurements to be made. CID of TaO+ was determined to be most efficient at qz = 0.67 (226 kHz for m/z 197). Suitable resonance excitation voltages and times ranged from 0.56 to 1.2 Vp-p and 1 to 68 ms, respectively. Under these conditions, measurement of rates approaching 80 s−1 for the dissociation of TaO+ could be made without significant complications associated with competing processes, such as ion ejection.  相似文献   

11.
Azaphilones represent numerous groups of wild fungal secondary metabolites that exhibit exceptional tendency to bind to nitrogen atoms in various molecules, especially those containing the amine group. Nitrogenized analogues of mitorubrin azaphilones, natural secondary metabolites of Hypoxylon fragiforme fungus, have been detected in the fungal methanol extract in very low concentrations. Positive electrospray ionization interfaced with high‐resolution mass spectrometry was applied for confirmation of the elemental composition of protonated species. Collision‐induced dissociation (CID) experiments have been performed, and fragmentation mechanisms have been proposed. Additional information regarding both secondary metabolite analogue families has been reached by application of gas‐phase proton/deuterium (H/D) exchanges performed in the collision cell of a triple quadrupole mass spectrometer. An incomplete H/D exchange with one proton less than expected was observed for both protonated mitorubrin azaphilones and their nitrogenized analogues. By means of the density functional theory, an appropriate explanation of this behavior was provided, and it revealed some information concerning gas‐phase H/D exchange mechanism and protonation sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Mass-analysed ion kinetic energy spectra for collisional activation (CA) of [C6H6]+˙ formed via electron capture by [C6H6]2+ ions in collision with neutral benzene molecules have been compared for the C6H6 isomers benzene, 1,5-hexadiyne and 2,4-hexadiyne. Comparisons of fragment abundance and total CA fragment yields were also made for [C6H6]+˙ ions generated by electron ionization (EI). CA conditions of ion velocity and collision gas pressure were identical in these comparisons. In general the fragment abundance patterns for the ions formed by charge exchange were very similar to those for singly charged benzene ions generated by EI. However, significant variations in CA fragment yield (the ratio of the total CA fragment ion abundance to the abundance of the incident unfragmented ions) were observed. It is not clear from the results whether these variations reflect structurally different ions or ions of different internal energies. The CA spectra of [C6H6]+˙ ions derived from charge exchange reactions between the benzene dication and the target gases He, Ne, Ar, Kr and Xe have also been recorded and, once again, very similar fragment abundance patterns were observed along with large variations in total CA fragment yields. Charge exchange efficiency measurements are reported for reactions between the benzene dication and the targets He, Ne, Ar, Kr, Xe and C6H6 (benzene) and also for the doubly charged ions derived from the linear C6H6 isomers. In the latter case Xe and benzene targets were used. The energetics and efficiency measurements for the former reactions suggest that for targets such as He and Ne the processes probably involve excited states of the doubly charged ions. The efficiencies measured for the latter reactions were distinctly different for the three C6H6 isomers and may indicate a strong dependence of charge exchange cross-section on doubly charged ion structure.  相似文献   

13.
A tandem mass spectrometric study of protonated isomeric hydroxypyridine N‐oxides was carried out with a hybrid quadrupole/time‐of‐flight mass spectrometer coupled with different atmospheric pressure ionization sources. The behavior observed in the collision‐induced dissociation (CID) mass spectra of the parent cations, was similar irrespective of the source employed. However, there were intrinsic differences in the intensities of the two fragments observed for each isomer. The major fragment because of elimination of a hydroxyl radical, dominated the CID spectra (in contrast with weaker water loss) at different energy thresholds. Therefore, it was possible to differentiate both isomers at collision energies above 13 eV by comparing the ratio of intensities of the major fragment relative to the precursor cation. In addition, quantum chemical calculations at the B3LYP/6‐31 + + G(d,p) level of theory were performed for the protonated isomers of hydroxypyridine N‐oxide and their radical cation products in order to gain insight into the major routes of dissociation. The results suggest that dissociation from the lowest triplet excited state of the protonated species would provide a reasonable rationalization for the difference in behavior of both isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Doubly charged tungsten hexacarbonyl W(CO)(6) (2+) ions were made to collide with Ar and K targets to give singly and doubly charged positive ions by collision-induced dissociation (CID). The resulting ions were analyzed and detected by using a spherical electrostatic analyzer. Whereas the doubly charged fragment ions resulting from collisional activation (CA) were dominant with the Ar target, singly charged fragment ions resulting from electron transfer were dominant with the K target. The internal energy deposition in collisionally activated dissociation (CAD) evaluated with the Ar target was broad and decreased with increasing internal energy. The predominant peaks observed with the K target were associated with singly charged W(CO)(2) (+) and W(CO)(3) (+) ions: these ions were not the result of CA, but arose from dissociation induced by electron transfer (DIET). The internal energy deposition resulting from the electron transfer was very narrow and centered at a particular energy, 7.8 eV below the energy level of the W(CO)(6) (2+) ion. This narrow internal energy distribution was explained in terms of electron transfer by Landau-Zener potential crossing at a separation of 5.9 x 10(-8) cm between a W(CO)(6) (2+) ion and a K atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of 1.1 x 10(-14) cm(2) was estimated for electron capture of the doubly charged W(CO)(6) (2+) ion from the alkali metal target, whose ionization energy is very low. The term "collision-induced dissociation," taken literally, includes all dissociation processes induced by collision, and therefore encompasses both CAD and DIET processes in the present work. Although the terms CID and CAD have been defined similarly, we would like to propose that they should not be used interchangeably, on the basis that there are differences in the observed ions and in their intensities with Ar and K targets.  相似文献   

15.
The low energy collision induced dissociation (CID) of the carboxylate anions generated by electrospray ionization of leukotriene B4 (LTB4) and 16 of its metabolites was studied in a tandem quadrupole mass spectrometer. LTB4 is a biologically active lipid mediator whose activity is terminated by metabolism into a wide variety of structural variants. The collision-induced dissociation spectra of the carboxylate anions revealed structurally informative ions whose formation was determined by the position of hydroxyl substituents and double bonds present in the LTB4 metabolite. Major ions resulted from charge remote α-hydroxy fragmentation or charge directed α-hydroxy fragmentation. The conjugated triene moiety present in some metabolites was proposed to undergo cyclization to a 1,3-cyclohexadiene structure prior to charge remote or charge driven a-hydroxy fragmentation. The mechanisms responsible for all major ions observed in the CID spectra were studied using stable isotope labeled analogs of the LTB4 metabolites. In general, the collision-induced decomposition of carboxylate anions produced unique spectra for all LTB4 derived metabolites. The observed decomposition product ions from the carboxylate anion could be useful in developing assays for these molecules in biological fluids.  相似文献   

16.
This paper examined the bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds in Sudan heavy petroleum fraction. Both broadband and quadrupole isolation modes positive-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) coupled with collision induced dissociation (CID) techniques were used to characterize a low sulfur crude oil derived vacuum residuum (VR). The appropriate CID operating condition was selected by comparing the molecular weight distributions of the basic nitrogen compounds under various CID operating conditions. Both oddand even-electron fragment ions were observed from the mass spectrum, indicating that the heterolytic and homolytic bond cleavages occurred simultaneously during the CID process. The odd-electron fragment ions were predominant in each class species, indicating preferential heterolytic bond cleavages. At the optimal CID condition, the alkyl groups decomposed deeply and just left the aromatic cores of the nitrogen compounds. No significant variation in double bond equivalent (DBE) value was observed between the fragment and parent ions, revealing that the domination of single core structure.  相似文献   

17.
Means for effecting dipolar direct current collision-induced dissociation (DDC CID) on a quadrupole/time-of-flight in a mass spectrometer have been implemented for the broadband dissociation of a wide range of analyte ions. The DDC fragmentation method in electrodynamic storage and transmission devices provides a means for inducing fragmentation of ions over a large mass-to-charge range simultaneously. It can be effected within an ion storage step in a quadrupole collision cell that is operated as a linear ion trap or as ions are continuously transmitted through the collision cell. A DDC potential is applied across one pair of rods in the quadrupole collision cell of a QqTOF hybrid mass spectrometer to effect fragmentation. In this study, ions derived from a small drug molecule, a model peptide, a small protein, and an oligonucleotide were subjected to the DDC CID method in either an ion trapping or an ion transmission mode (or both). Several key experimental parameters that affect DDC CID results, such as time, voltage, low mass cutoff, and bath gas pressure, are illustrated with protonated leucine enkephalin. The DDC CID dissociation method gives a readily tunable, broadband tool for probing the primary structures of a wide range of analyte ions. The method provides an alternative to the narrow resonance conditions of conventional ion trap CID and it can access more extensive sequential fragmentation, depending upon conditions. The DDC CID approach constitutes a collision analog to infrared multiphoton dissociation (IRMPD).  相似文献   

18.
Selected Reaction Monitoring (SRM) carried out on triple‐quadrupole mass spectrometers coupled to liquid chromatography has been a reference method to develop quantitative analysis of small molecules in biological or environmental matrices for years and is currently emerging as a promising tool in clinical proteomic. However, sensitive assays in complex matrices are often hampered by the presence of co‐eluted compounds that share redundant transitions with the target species. On‐the‐fly better selection of the precursor ion by high‐field asymmetric waveform ion mobility spectrometry (FAIMS) or increased quadrupole resolution is one way to escape from interferences. In the present work we document the potential interest of substituting classical gas‐collision activation mode by laser‐induced dissociation in the visible wavelength range to improve the specificity of the fragmentation step. Optimization of the laser beam pathway across the different quadrupoles to ensure high photo‐dissociation yield in Q2 without detectable fragmentation in Q1 was assessed with sucrose tagged with a push‐pull chromophore. Next, the proof of concept that photo‐SRM ensures more specific detection than does conventional collision‐induced dissociation (CID)‐based SRM was carried out with oxytocin peptide. Oxytocin was derivatized by the thiol‐reactive QSY® 7 C5‐maleimide quencher on cysteine residues to shift its absorption property into the visible range. Photo‐SRM chromatograms of tagged oxytocin spiked in whole human plasma digest showed better detection specificity and sensitivity than CID, that resulted in extended calibration curve linearity. We anticipate that photo‐SRM might significantly improve the limit of quantification of classical SRM‐based assays targeting cysteine‐containing peptides. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
    
Relative sensitivity factors (RSF) (Fe=1) were determined for steel, aluminium and copper standard samples by direct current glow discharge mass spectrometry using Kr and Xe as discharge gas. In general, the RSF values in Kr and Xe were higher than in Ar; however for S and P in Kr gas and P, As and Se in Xe gas they were considerably lower. This decrease is related to the relative importance of the Penning ionization process in overall ionization of the sputtered species. The results showed the percentage of Penning ionization to account for 75.6–82.0% for Se, As and P and 64.2% for S.  相似文献   

20.
Plasma polymerization of trimethylsilane (TMS) was carried out and investigated in a direct current (dc) glow discharge. The formation of TMS plasma glow was carefully examined with optical photography as compared with an Ar dc glow discharge. It was found that there exists a significant difference in the nature of glow and how the glow is created in TMS glow discharge, which polymerizes or causes deposition, and that of monatomic gas such as Ar, which does not polymerize or deposit. In dc Ar discharge, the negative glow, which is the most luminous zone in the discharge, develops in a distinctive distance away from the cathode surface, and the cathode remains in the dark space. In a strong contrast to this situation, in TMS dc discharge, the primary glow that is termed as cathode-glow in this paper appears at cathode surface, while a much weaker negative glow as a secondary glow was observed at the similar location to where the Ar negative glow appears. The deposition results of plasma polymers and gas phase composition data of TMS in a closed reactor acquired by ellipsometry and residual gas analyzer (RGA) measurements clearly indicated that the cathode-glow in TMS glow discharge is mainly associated with chemically reactive species that would polymerize or form deposition, but the negative glow is related to species from simple gases that would not polymerize or deposit. Based on the glow location with respect to the cathode, it was deduced that the cathode-glow is due to photon emitting species created by molecular dissociation of the monomer that is caused by low energy electrons emanating from the cathode surface. The negative glow is due to the ionization and the formation of excited neutrals of fragmented atoms caused by high-energy electrons. Polymerizable species that would cause deposition of material (plasma polymers) are created mainly by the fragmentation of monomer molecules by low energy electrons, but not by electron-impact ionization of the monomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号