首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The alloys with the general formula of Bi85Sb15−xAgx (x=0, 1, 3, 5, 7) were prepared by mechanical alloying and subsequent pressureless sintering (Bi85Sb15 alloy was used for comparison). Their transport properties involving electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The maximum absolute value of Seebeck coefficient (120 μV/K) was found at 160 K in the alloy Bi85Sb15−xAgx (x=3). The figure-of-merit of alloy Bi85Sb15−xAgx (x=1) reached a maximum value of 2.16×10−3 K−1 at 219 K, which is as large again as that of the reference sample Bi85Sb15.  相似文献   

2.
Bi100−xSbx (x=8-17) alloys were prepared by direct melting of constituent elements, which was followed by quenching and annealing. The synthesis of high-homogeneity alloys was confirmed by X-ray diffraction, differential thermal analyses and electron microprobe analysis. The semiconducting and thermoelectric properties of the samples were investigated by measuring Hall coefficient, electrical resistivity and Seebeck coefficient in the temperature range from 20 to 300 K for both the as-quenched and annealing samples. The properties change gradually with the Sb concentration x, which is attributed to the variation of the energy gap. The Hall mobility was enhanced by annealing, which leads to a small electrical resistivity and a large Seebeck coefficient. Consequently, large values of about 8.5 mW/mK2 for the power factor were obtained in the annealed alloys of x=8,12, and 14.  相似文献   

3.
In this work, Bi-doped magnesium silicide compounds were prepared by applying a combination of both, short-time ball milling and heating treatment. The effect of Mg excess was also studied, aiming towards further improvement in thermoelectric properties. The structural modifications of all materials were followed by Powder X-ray diffraction and Scanning Electron Microscopy. Highly dense pellets of Mg2Si1−xBix (0≤x≤0.035) and Mg2+δSi0.975Bi0.025 (δ=0.04, 0.06 and 0.12) were fabricated via hot pressing and studied in terms of Seebeck coefficient, electrical and thermal conductivities and free carrier concentration. Their thermoelectric performance, at high temperature range, is presented and the maximum value of the dimensionless-figure-of-merit (ZT) is found to be 0.68 at 810 K, for Mg2Si0.97Bi0.03.  相似文献   

4.
The nanocrystalline materials with the general formula Bi85Sb15−xNbx (x=0, 0.5, 1, 2, 3) were prepared by mechanical alloying and subsequent high-pressure sintering. Their transport properties involving electrical conductivity, Seebeck coefficient and thermal conductivity have been investigated in the temperature range of 80-300 K. The absolute value of Seebeck coefficient of Bi85Sb13Nb2 reaches a maximum of 161 μV/K at 105 K, which is 69% larger than that of Bi85Sb15 at the same temperature. The power factor and figure-of-merit are 4.45×10−3 WK−2m−1 at 220 K and 1.79×10−3 K−1 at 196 K, respectively. These results suggest that thermoelectric properties of Bi85Sb15 based material can be improved by Nb doping.  相似文献   

5.
Incorporation of Ag in the crystal lattice of Sb2Te3 creates structural defects that have a strong influence on the transport properties. Single crystals of Sb2−xAgxTe3 (x=0.0; 0.014; 0.018 and 0.022) were characterized by measurements of the temperature dependence of the electrical resistivity, Hall coefficient, Seebeck coefficient and thermal conductivity in the temperature range of 5-300 K. With an increasing content of Ag the electrical resistance, the Hall coefficient and the Seebeck coefficient all decrease. This implies that the incorporation of Ag atoms in the Sb2Te3 crystal structure results in an increasing concentration of holes. However, the doping efficiency of Ag appears to be only about 50% of the expected value. We explain this discrepancy by a model based on the interaction of Ag impurity with the native defects in the Sb2−xAgxTe3 crystal lattice. Defects have a particularly strong influence on the thermal conductivity. We analyze the temperature dependence of the lattice thermal conductivity in the context of the Debye model. Of the various phonon scattering contributions, the dominant influence of Ag incorporation in the crystal lattice of Sb2Te3 is revealed to be point-defect scattering where both the mass defect and elastic strain play a pivotal role.  相似文献   

6.
Temperature dependences of the Hall coefficient, Hall mobility and thermoelectric properties of Ni-doped CoSb3 have been characterized over the temperature range from 20 to 773 K. Ni-doped CoSb3 is an n-type semiconductor and the conduction type changes from n-type to p-type at around 450 K. The temperature for the transition from n-type to p-type increased with increasing Ni content x. The Seebeck coefficient reaches a maximum value near the transition temperature. The electrical resistivity indicates that Co1−xNixSb3 is a typical semiconductor when x≤0.03 and a degenerate semiconductor when x>0.03. Thermal conductivity analyses show that the lattice component is predominant at lower temperatures and carrier and bipolar components become large at temperatures higher than the transition temperature. The thermoelectric figure of merit reaches a maximum value close to the transition temperature and the largest value, 4.67×10−4 K−1 at 600 K, was obtained for x=0.05.  相似文献   

7.
Polycrystalline samples of composition Cu1−xNixInTe2 (for x=0–0.05) were synthesized from elements of 5 N purity using a solid-state reaction. The phase purity of the products was verified by X-ray diffraction. Samples for measurement of the transport properties were prepared using hot-pressing. The samples were then characterized by the measurement of electrical conductivity, the Hall coefficient, the Seebeck coefficient, and the thermal conductivity over a temperature range of 300–675 K. All of the samples demonstrate p-type conductivity. We discuss the influence of Ni substitution on the free carrier concentration and the thermoelectric performance. The investigation of the thermoelectric properties shows an improvement up to 50% of ZT in the temperature range of 300–600 K.  相似文献   

8.
Electrical resistivity and Seebeck coefficients of Y BaCo4−xZnxO7 (x=0.0,0.5,1.0,2.0) were investigated in the temperature range 350-1000 K. It was found that the electrical resistivity and activation energy increase with increasing Zn concentration, while Seebeck coefficients do not increase but decrease when electrical resistivity increases. We explained the increase of electrical resistivity and the drop of Seebeck coefficients for Zn-substituted samples by the decrease of carrier mobility, rather than of carrier concentration. The effect of oxygen absorption and desorption on the electrical resistivity and Seebeck coefficients was also investigated. An abrupt change of transport properties happens at about 650 K for x=0.0 and 0.5 samples measured in oxygen. For x=1.0 and 2.0 samples, however, such change disappears and the transport behavior in oxygen is almost same as that in nitrogen due to the significant suppression of oxygen diffusion caused by the higher Zn concentration in these samples.  相似文献   

9.
The Bi0.9Sb0.1 powders were prepared by mechanical alloying and then pressed under 6 GPa at different pressing temperatures. X-ray diffraction spectra showed that the single phase was formed. The nanostructure of grain was observed by bright-field imaging. Electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The absolute Seebeck coefficient value of 120.3 μV/K was measured at 130 K. The figure-of-merit reached a maximum value of 0.90×10−3 K−1 at 140 K.  相似文献   

10.
Skutterudite compounds PbxBayCo4Sb11.5Te0.5 (x≤0.23,y≤0.27) with bcc crystal structure have been prepared by the high pressure and high temperature (HPHT) method. The study explored a chemical method for filling Pb and Ba atoms into the voids of CoSb3 to optimize the thermoelectric figure of merit ZT in the system of PbyBaxCo4Sb11.5Te0.5. The structure of PbxBayCo4Sb11.5Te0.5 skutterudites was evaluated by means of X-ray diffraction. The Seebeck coefficient, electrical resistivity and power factor were performed from room temperature to 710 K. Compared with Co4Sb11.5Te0.5, the thermal conductivity of Pb and Ba double-filled samples was reduced evidently. Among all filled samples, Pb0.03Ba0.27Co4Sb11.5Te0.5 showed the highest power factor of 31.64 μW cm−1 K−2 at 663 K. Pb0.05Ba0.25Co4Sb11.5Te0.5 showed the lowest thermal conductivity of 2.73 W m−1 K−1 at 663 K, and its maximum ZT value reached 0.63 at 673 K.  相似文献   

11.
Bi85Sb15−xPrx (x=0,1,2,3) alloys with partial substitution of Pr for Sb were synthesized by mechanical alloying followed by high-pressure sintering. The crystal structure was characterized by X-ray diffraction. The electrical conductivity and Seebeck coefficient were measured in the temperature range of 80–300 K. The results show that the electrical conductivity and Seebeck coefficient of Pr-substituted samples are both larger than those of the reference sample, Bi85Sb15, in the whole measurement temperature range. The power factor of Bi85Sb13Pr2 reaches a maximum value of 3.83×10−3 W K−2 m−1 at 235 K, which is about four times larger than that of the reference sample, Bi85Sb15, at the same temperature.  相似文献   

12.
Normal state electrical and thermal properties, including electrical resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of the CaAlxSi2−x (x=0.9-1.2) system were investigated. It is found that the electrical resistivity and Seebeck coefficient exhibit a typical metallic character throughout the temperature range investigated, and the metallicity of this series is enhanced with increase in Al/Si ratio. On the other hand, the thermal conductivity shows a weak temperature variation at low temperatures, whereas κ follows a T2-dependence for T>150 K. Analysis of the electronic thermal resistivity based on Klemen’s model reveals that the scattering of electrons from the defects and static imperfections becomes dominant as the temperature approaches Tc. These results are discussed in the light of simultaneous existence of various crystal structures and development of ultra-soft phonon mode recently observed in the CaAlSi system.  相似文献   

13.
《Current Applied Physics》2015,15(7):784-788
The study of Mg2Si based thermoelectric materials has received widespread attention. In this research, quaternary Mg2(1+x)(Si0.2Ge0.1Sn0.7)0.99Sb0.01 (0.06≤x ≤ 0.12) solid solutions with an optimized Sb doping were prepared by B2O3 flux method combined with spark plasma sintering (SPS) technique. The Seebeck coefficient, electrical conductivity and thermal conductivity were measured as a function of Mg excess between 300 K and 780 K. The electron concentration, electrical conductivity and lattice thermal conductivity increase while the Seebeck coefficient decreases with increasing magnesium excess content. The electron effective mass enhancement for x ≥ 0.08 suggests the conduction band convergence of Mg2Si0.2Ge0.1Sn0.7. Mg2.16(Si0.2Ge0.1Sn0.7)0.99Sb0.01 with a maximum dimensionless figure of merit of 0.94 at 780 K stand out as one of the best materials for intermediate temperature applications, providing a good nontoxic alternative to PbTe.  相似文献   

14.
《Current Applied Physics》2010,10(3):866-870
Perovskite La1−xSrxFeO3 (0.10  x  0.20) ceramics have been synthesized by the conventional solid-state reaction technique. Their electrical resistivity, Seebeck coefficient and thermal conductivity have been measured. It has been found that the increase of Sr content reduces significantly both the electrical resistivity and the Seebeck coefficient, but slightly increases the high-temperature thermal conductivity. An adiabatic hopping conduction mechanism of small polaron is suggested from the analysis of the temperature dependence of the electrical resistivity. Seebeck coefficients decrease with increasing temperature, and saturate at temperature above 573 K. The saturated value of Seebeck coefficient decreases with increasing of Sr contents, from 200 μV/K for x = 0.10 to 100 μV/K for x = 0.20. All samples exhibit lower thermal conductivity with values around 2.6 W/m K. The highest dimensionless figure of merit is 0.031 at temperature 973 K in La0.88Sr0.12FeO3.  相似文献   

15.
The redox behavior of perovskite-type La0.90Sr0.10Al0.85−xFexMg0.15O3−δ (x=0.20-0.40) mixed conductors was analyzed by the Mössbauer spectroscopy and measurements of the total conductivity and Seebeck coefficient in the oxygen partial pressure range from 10−20 to 0.5 atm at 1023-1223 K. The results combined with oxygen-ion transference numbers determined by the faradaic efficiency technique in air, were used to calculate defect concentrations, mobilities, and partial ionic and p- and n-type electronic conductivities as a function of oxygen pressure. The redox and transport processes can be adequately described in terms of oxygen intercalation and iron disproportionation reactions, with the thermodynamic functions independent of defect concentrations. No essential delocalization of the electronic charge carriers was found. The oxygen non-stoichiometry values estimated from the conductivity vs. p(O2) dependencies, coincide with those evaluated from the Mössbauer spectra.  相似文献   

16.
Pb- or Sn-doped Bi88Sb12 alloys were prepared by direct melting, quenching, and annealing. The Bi-Sb alloy phase was predominant in all samples. Pb or Sn atoms were distributed almost uniformly in Bi88Sb12, while some segregation was confirmed at the grain boundaries when Pb or Sn was involved heavily. The thermoelectric properties of these doped materials were investigated by measuring the Hall coefficient, electrical resistivity, and Seebeck coefficient between 20 K and 300 K. The Hall and Seebeck coefficients of Pb- or Sn-doped samples were positive at low temperatures, indicating that the doping element acted as an acceptor. Temperatures resulting in positive Hall and Seebeck coefficients further increased with increasing doping amount and with respect to the annealing process. As a result, a large power factor of 1.2 W/mK2 could be obtained in the 3-at% Sn-doped sample at 220 K, with a large positive Seebeck coefficient.  相似文献   

17.
Co4Sb12−xTex compounds were prepared by mechanical alloying combined with cold isostatic pressing, and the effects of Te doping on the thermoelectric properties were studied. The electronic structure of Te-doped and undoped CoSb3 compounds has been calculated using the first-principles plane-wave pseudo-potential based on density functional theory. The experimental and calculated results show that the value of the solution limit x of Te in Co4Sb12−xTex compounds is between 0.5 and 0.7. The Fermi surface of CoSb3 is located between the conduction band and the valence band, and its electrical resistivity decreases with increasing temperature. The density of states is mainly composed of Co 3d and Sb 5p electrons for intrinsic CoSb3.The Fermi surface of Te-doped compounds moves to the conduction band and its electrical resistivity increases with increasing temperature, exhibiting n-type degenerated semiconductor character. Under the conditions of the experiment, the maximum value 2.67 mW/m K2 of the power factor for Co4Sb11.7Te0.3 is obtained at 600 K; this is about 14 times higher than that of CoSb3.  相似文献   

18.
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples.  相似文献   

19.
Y1−xCaxBaCo4O7 (0.0≤x≤1.0) samples were prepared by the solid-state reaction method and their high-temperature electronic transport properties were investigated in nitrogen and oxygen respectively. Phase structure of Y1−xCaxBaCo4O7 transforms from hexagonal symmetry for x ≤0.6 samples to orthorhombic symmetry for x≥0.8 samples. In nitrogen, Y1−xCaxBaCo4O7 samples evolve three kinds of electronic transport behaviors with the increase of Ca content: thermal activation conduction, small polaron hopping conduction, and a possible mixed conduction. Ca doping increases the hole concentration and thus decreases Seebeck coefficients. In oxygen, the temperature dependence of electrical resistivity and Seebeck coefficients of Y1−xCaxBaCo4O7 samples displays similar change to their respective thermogravimetric curve, showing their electronic transport behavior under the control of their oxygen adsoption/desorption process.  相似文献   

20.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号