首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional adjustment.  相似文献   

2.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

3.
This paper develops an accurate and computationally efficient homogenization-based continuum plasticity-damage (HCPD) model for macroscopic analysis of ductile failure in porous ductile materials containing brittle inclusions. Example of these materials are cast alloys such as aluminum and metal matrix composites. The overall framework of the HCPD model follows the structure of the anisotropic Gurson-Tvergaard-Needleman (GTN) type elasto-plasticity model for porous ductile materials. The HCPD model is assumed to be orthotropic in an evolving material principal coordinate system throughout the deformation history. The GTN model parameters are calibrated from homogenization of evolving variables in representative volume elements (RVE) of the microstructure containing inclusions and voids. Micromechanical analyses for this purpose are conducted by the locally enriched Voronoi cell finite element model (LE-VCFEM) [Hu, C., Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int. J. Numer. Methods Eng. 76(12), 1955-1992]. The model also introduces a novel void nucleation criterion from micromechanical damage evolution due to combined inclusion and matrix cracking. The paper discusses methods for estimating RVE length scales in microstructures with non-uniform dispersions, as well as macroscopic characteristic length scales for non-local constitutive models. Comparison of results from the anisotropic HCPD model with homogenized micromechanics shows excellent agreement. The HCPD model has a huge efficiency advantage over micromechanics models. Hence, it is a very effective tool in predicting macroscopic damage in structures with direct reference to microstructural composition.  相似文献   

4.
IntroductionHyper_elasticmaterials ,suchasrubberandpolyurethane ,havemanyexcellentpropertiesandhavebeenusedwidelyinalmostallregionsofevery_daylifeandindustrialmanufacturing .Thevoidformationandgrowthinhyper_elasticmaterialsduetotheinstabilityofmaterialsplayafundamentalroleinthemechanismsofmaterialfractureandfailure.SotheproblemhasgotacertaindevelopmentinthepasttwentyyearsandtherecentreviewisthatofHorgan[1] .Chou_WangandHorgan[2 ] ,RenandCheng[3 ,4] studiedthegrowthofacentervoidinthecylindero…  相似文献   

5.
含裂隙材料的空洞化损伤   总被引:2,自引:0,他引:2  
李国琛 《力学学报》1991,23(2):181-189
本文研究了含有微小裂隙的韧性材料中细观损伤的演化。随外加应力的增大,在裂隙周围的基体中微小空洞不断地萌生并扩展。在一些情况下,由此而形成的内部损伤与仅有大小空洞的损伤有显著的不同特点。结果还表明,具有细观尺度的短裂纹,其损伤作用不宜用裂纹长度作标志。文中最后提出一个材料韧性断裂的判据。  相似文献   

6.
多孔Mooney-Rivlin材料矩形板的单向拉伸   总被引:2,自引:0,他引:2  
任九生  程昌钧 《力学季刊》2002,23(3):347-353
本文利用不同可压超弹性材料大变形的Mooney-Rivlin应变能函数研究了含有多个微孔的矩形板在单向拉伸作用下的有限变形和受力分析。首先利用不可压条件得到了文中所给的含有某种对称性分布的多个微孔的矩形板的变形模式函数,其中所含的一个参数可由远离微孔的无穷远处的变形状态确定,另一个参可用最小势能原理导出变分近似解。文中详细分析了板中微孔(一个,三个和五个)随载荷作用的增长情况和微孔边缘应力的分布情况,并进行了比较。讨论了微孔的个数和排列方式,微孔的孔间距离等因素对微孔增长和应力分布的影响。  相似文献   

7.
The purpose of this research is to study the effect of voids on the surface wave propagation in a layer of a transversely isotropic thermoelastic material with voids lying over an isotropic elastic half-space. The frequency equation is derived after developing a mathematical model for welded and smooth contact boundary conditions. The dispersion curves giving the phase velocity and attenuation coefficient via wave number are plotted graphically to depict the effects of voids and anisotropy for welded contact boundary conditions. The specific loss and amplitudes of the volume fraction field, the normal stress, and the temperature change for welded contact are obtained and shown graphically for a particular model to depict the voids and anisotropy effects. Some special cases are also deduced from the present investigation.  相似文献   

8.
A problem of compacting a mixture of copper and molybdenum nanopowders under the action of external loading generated by a spherical piston is solved by the molecular dynamics method. Interatomic interaction is calculated with the use of a multiparticle potential obtained by the embedded atom method. It is shown that compaction leads to significant deformations in copper, resulting in the loss of the crystalline structure; copper nanoparticles melt and fill the entire porous space. Molybdenum particles are deformed to a much smaller extent; they are not destroyed and preserve their crystalline structure. Under high loading, there appear voids in copper at the stage of compact extension; these voids rapidly grow in size and coagulate into one large void located in the nanocell center. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 11–23, September–October, 2008.  相似文献   

9.
The effect of non-locality on the Peierls stress of a dislocation, predicted within the framework of the Peierls-Nabarro model, is investigated. Both the integral formulation of non-local elasticity and the gradient elasticity model are considered. A modification of the non-local kernel of the integral formulation is proposed and its effect on the dislocation core shape and size, and on the Peierls stress are discussed. The new kernel is longer ranged and physically meaningful, improving therefore upon the existing Gaussian-like non-locality kernels. As in the original Peierls-Nabarro model, lattice trapping cannot be captured in the purely continuum non-local formulation and therefore, a semi-discrete framework is used. The constitutive law of the elastic continuum and that of the glide plane are considered both local and non-local in separate models. The major effect is obtained upon rendering non-local the constitutive law of the continuum, while non-locality in the rebound force law of the glide plane has a marginal effect. The Peierls stress is seen to increase with increasing the intrinsic length scale of the non-local formulation, while the core size decreases accordingly. The solution becomes unstable at intrinsic length scales larger than a critical value. Modifications of the rebound force law entail significant changes in the core configuration and critical stress. The discussion provides insight into the issue of internal length scale selection in non-local elasticity models.  相似文献   

10.
根据孔隙热弹性线性理论,本文首先建立了在移动周期载荷作用下孔隙热弹性地基动力学响应分析的数学模型,其中提出了在周期性边界上必须满足的6类适当的条件,即界面位移相等、应力相等、孔隙百分比相等、温度相等以及在外法线方向孔隙发展相等和温度导数相等。在此基础上,分别采用微分求积法(DQM)和有限差分法(FDM)对控制方程进行空间和时间离散,并求解。作为算例,分别研究了在移动周期载荷和极限车载作用下孔隙热弹性地基的动力学响应,考察了车速对沉降、孔隙体积百分比和温度的影响。可以看到,本文提出的处理周期性问题DQM,具有精度高、收敛性好,计算效率高等特点。  相似文献   

11.
In the present paper, axisymmetric cell models containing one or two voids and athree-dimensional cell model containing two voids have been used to investigate void size andspacing effect on the ductile fracture in materials with high initial void volume fraction. They areperformed for round smooth and round notched specimens under uniaxial tension. The examplematerial used for comparison is a nodular cast iron material GGG-40 with initial void volumefraction of 7.7%. The parameters considered in this paper are void size and shape foraxisymmetric cell models containing a single void, and void distribution pattern foraxisymmetric and 3D cell models containing two voids of different sizes. The results obtainedfrom these cell models by using FEM calculations are compared with the Gurson model, theGurson–Tvergaard–Needleman model, the Rice–Tracey model and the modified Rice–Traceymodel. It can be stated that the influence of void size and void spacing on the growth in volumeof voids is very large, and it is dependent on the distribution of voids. Using non-uniform voiddistribution, the results of axisymmetric cell models can explain how a void can grow in anunstable state under very low stress triaxiality at very small strain as observed in experiments.Calculations using cell models containing two voids give very different results about the stableand unstable growth of voids which are strongly dependent on the configuration of cell model.  相似文献   

12.
A model of crack bridging and reinforced elliptical voids is proposed, in which the fibers joining the surfaces of the void or crack are modelled as discrete, linear elastic bars. We show that a theory recently developed by us to analyze structural interfaces permits analytical attack and solution of multiple important previously unsolved problems of stress concentration and fracture. In particular, an analytical solution is provided for a reinforced elliptical void, which, by superposition, allows treatment of arbitrary fiber distributions, which can be even randomly distributed and oriented. In the special case of small or null ratio between a void's axes, new stress intensity factor expressions are obtained, which account for fibers’ inclination and geometry.  相似文献   

13.
14.
Starting from a Cauchy elastic composite with a dilute suspension of randomly distributed inclusions and characterized at first-order by a certain discrepancy tensor (see part I of the present article), it is shown that the equivalent second-gradient Mindlin elastic solid: (i) is positive definite only when the discrepancy tensor is negative defined; (ii) the non-local material symmetries are the same of the discrepancy tensor, and (iii) the non-local effective behaviour is affected by the shape of the RVE, which does not influence the first-order homogenized response. Furthermore, explicit derivations of non-local parameters from heterogeneous Cauchy elastic composites are obtained in the particular cases of: (a) circular cylindrical and spherical isotropic inclusions embedded in an isotropic matrix, (b) n-polygonal cylindrical voids in an isotropic matrix, and (c) circular cylindrical voids in an orthotropic matrix.  相似文献   

15.
The need to determine the thermal conductivity of fibers for design purposes of new composite materials and the inherent difficulties in the direct measurement of the thermal conductivity of fibers motivated the present work due to its importance for energy conservation purposes. In this work, a correlation formula is developed to predict the thermal conductivities of fiber as function of the effective thermal conductivity of a fiber-reinforced composite laminates and their constituents which are easy to measure. The parallel and series thermal models of composite walls have been utilized in developing this correlation equation. The coefficients of this formula can be given as functions of the voids volume fraction for each fiber to resin volume ratio considered. The validity of the models is verified through finite element analysis. This model also shows excellent agreement with the available experimental values.  相似文献   

16.
孔隙热弹性体有限变形动力学的若干变分原理   总被引:1,自引:0,他引:1  
首先通过对熵均衡方程积分,将其变换为无一阶时间导数项的等价方程,再将Hamilton变分原理运用和推广于各向异性孔隙热弹性体有限变形动力学中,建立了相应的非线性控制微分方程、力的边界条件和初始条件.同时,引入孔隙百分比变化和温度变化引起的力矩,将Hamilton变分原理推广到孔隙热弹性结构中,提出了以Kirchhoff-Love假设为基础的孔隙热弹性Karman-型薄板的完全的非线性数学模型,该模型考虑了中面力、中面惯性和转动惯性影响.  相似文献   

17.
The effect of particle clustering on void damage rates in a ductile material under triaxial loading conditions is examined using three-dimensional finite element analysis. An infinite material containing a regular distribution of clustered particles is modelled using a unit cell approach. Three discrete particles are introduced into each unit cell while a secondary population of small particles within the surrounding matrix is represented using the Gurson-Tvergaard-Needleman (GTN) constitutive equations. Deformation strain states characteristic of sheet metal forming are considered; that is, deep drawing, plane strain and biaxial stretching. Uniaxial tensile stress states with varying levels of superimposed hydrostatic tension are also examined.The orientation of a particle cluster with respect to the direction of major principal loading is shown to significantly influence failure strains. Coalescence of voids within a first-order particle cluster (consisting of three particles) is a stable event while collapse of inter-cluster ligaments leads to imminent material collapse through void-sheeting.  相似文献   

18.
19.
We present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influence of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.  相似文献   

20.
Ieşan  D.  Nappa  L. 《Meccanica》2004,39(2):125-138
This paper is concerned with the linear theory of thermoelastic materials with voids. We present a method to reduce the thermoelastic problem to an isothermal one with zero body loads and with certain known boundary data. The results are used to study the thermal stresses in a tube and the thermoelastic deformation of a cylinder subjected to a uniform temperature gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号