首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sub-picosecond pulses are used to measure the transient IR spectra of vibrationally excited Rh(CO)2 (acac) in dilute solutions of n-hexane and CCl3H. Ground-state bleach and excited-state absorption features are observed at tD>0, while interference-like spectra characteristic of the perturbed free induction decay (FID) of the probe polarization are seen at tD<). At tD>), the bleach signal exhibits an initial decay (n-hexane, 3–6 ps; CCl3H, 2.2–4 ps) attributed to rapid v-v coupling between the symmetric and asymmetric stretch modes of the dicarbonyl, followed by much slower (n-hexane, 61 ps; CCl3H, 101 ps) population relaxation. Calculated transient spectra and bleach decay curves obtained from a 5-level density matrix model of the coupled CO oscillators account for the data, including the effects due to perturbed FID and rapid v-v coupling.  相似文献   

2.
A detailed account is given of the experimental approach to measuring transient spectra of dilute gases using picosecond pulses. The picosecond continuum generated by Nd:glass laser pulses is used to probe gaseous samples and spectra are recorded in a double beam arrangement. The pump and probe pulses interact with the sample over a few centimeters by means of a dielectric waveguide. Picosecond time resolved spectra, relative fluorescence quantum yield measurements, and fluorescence spectra are reported for trans-stilbene under collision free conditions. The lifetime of the optically prepared states at 265 nm and 287 nm are 15 ps and 55 ps respectively, measured by the decay of the transient absorption. The deuteration effect is less than 20%. The variation of the fluorescence yield with vibrational energy excess in the excited state of trans is fitted to these lifetime measurements to yield the variation of nonradiative decay due to twisting of trans-stilbene. Cis-stilbene is suggested to twist in less than 1 ps. Consideration of the spectral results yields new information about the isomerization of stilbene, in particular that there exists a barrier to twisting in the isolated molecule and that vibrational energy redistribution at the trans configuration is probably not complete on the time scale of our experiments. A pictorial model for discussing constant energy relaxation phenomena is introduced.  相似文献   

3.
4.
The motion of vibrational wave packets in the system oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral properties of the probe pulse from 600 to 700 nm were chosen to cover the overlap region where ground-state bleach and stimulated emission signals are detected. The spectral phase of the pump pulse was manipulated by a liquid crystal display based pulse-shaping setup. Chirped excitation pulses of negative and positive chirp can be used to excite vibrational modes predominantly in the ground or excited state, respectively. To distinguish the observed wave packets in oxazine 1 moving in the ground or excited state, spectrally resolved transient absorption experiments are performed for various values of the linear chirp of the pump pulses. The amplitudes of the wave packet motion show an asymmetric behavior with an optimum signal for a negative chirp of -0.75 +/- 0.2 fs/nm, which indicates that predominantly ground-state wave packets are observed.  相似文献   

5.
A “genome order index,” defined as S = a2 + c2 + t2 + g2, where a, c, t, and g are the nucleotide frequencies of A, C, T, and G, respectively, was used to suggest that there exist genome-specific constraints on nucleotide composition. We show that the “evidence” for constraint, S < 1/3, is in fact a mathematical property that is always true regardless of data. Moreover, we show that S is strictly equivalent to and derivable from the Shannon H-function and has no advantage over it.  相似文献   

6.
Using the multiexciton density matrix theory of excitation energy transfer in chromophore complexes developed in a foregoing paper [J. Chem. Phys. 118, 746 (2003)], the computation of ultrafast transient absorption spectra is presented. Beside static disorder and standard mechanisms of excitation energy dissipation the theory incorporates exciton exciton annihilation (EEA) processes. To elucidate signatures of EEA in intensity dependent transient absorption data the approach is applied to the B850 ring of the LH2 found in rhodobacter sphaeroides. As main indications for two-exciton population and resulting EEA we found (i) a weakening of the dominant single-exciton bleaching structure in the transient absorption, and (ii) an intermediate suppression of long-wavelength and short-wavelength shoulders around the bleaching structure. The suppression is caused by stimulated emission from the two-exciton to the one-exciton state and the return of the shoulders follows from a depletion of two-exciton population according to EEA. The EEA-signature survives as a short-wavelength shoulder in the transient absorption if orientational and energetic disorder are taken into account. Therefore, the observation of the EEA-signatures should be possible when doing frequency resolved transient absorption experiments with a sufficiently strongly varying pump-pulse intensity.  相似文献   

7.
Biomolecules very often present complex energy deactivation networks with overlapping electronic absorption bands, making their study a difficult task. This can be especially true in transient absorption spectroscopy when signals from bleach, excited state absorption and stimulated emission contribute to the signal. However, quantum control spectroscopy can be used to discriminate specific electronic states of interest by applying specifically designed laser pulses. Recently, we have shown the control of energy flow in bacterial light-harvesting using shaped pump pulses in the visible and the selective population of pathways in carotenoids using an additional depletion pulse in the transient absorption technique. Here, we apply a closed-loop optimization approach to β-carotene using a spatial light modulator to decipher the energy flow network after a multiphoton excitation with a shaped ultrashort pulse in the near-IR. After excitation, two overlapping bands were detected and identified as the S1 state and the first triplet state T1. Using the transient absorption signal at a specific probe delay as feedback, the triplet signal could be optimized over the singlet contribution.  相似文献   

8.
Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.  相似文献   

9.
It is shown theoretically that a sequence of two identical microwave pulses with a time delay Δt and a phase difference φ between them generates a RYDMR signal which oscillates as cos φ in the phase domain and as a periodic function of Δt in the time domain. A striking similarity of this behaviour to electron spin-echo envelope modulation suggests regarding this phenomenon as a generation of RYDMR echo.  相似文献   

10.
Guo F  Sun W  Liu Y  Schanze K 《Inorganic chemistry》2005,44(11):4055-4065
A series of 4'-tolylterpyridyl platinum(II) complexes with different arylacetylide ligands, namely, phenylacetylide, 4-bromophenylacetylide, 4-nitrophenylacetylide, 4-methoxyphenylacetylide, 4-dimethylaminophenylacetylide, 1-naphthylacetylide, and 3-quinolinylacetylide, were synthesized. Their photophysical properties, such as electronic absorption spectra, emission characteristics at room temperature and 77 K, and transient difference absorption spectra, have been investigated. All of these complexes exhibit a metal-to-ligand charge-transfer (1MLCT) transition at ca. 420-430 nm in their electronic absorption spectra. For ttpy-Ph, ttpy-C6H4Br-4, ttpy-C6H4OCH3-4, ttpy-C6H4N(CH3)2-4, and ttpy-Np, an additional solvatochromic charge-transfer band appears at ca. 460-540 nm. This band is sensitive to the para substituents on the phenylacetylide ligand and is tentatively assigned to a metal- or/and acetylide-to-terpyridyl charge-transfer transition (i.e., a 1MLCT or/and 1LLCT transition). All of the complexes exhibit room-temperature phosphorescence. The emission can be attributed to a 3MLCT state except for ttpy-C6H4NO2-4, for which the emission likely originates from an intraligand 3pi,pi* state involving the nitrophenylacetylide ligand. For ttpy-C6H4OCH3-4, ttpy-C6H4N(CH3)2-4, and ttpy-Np, there probably is more than one low-energy state in close energy proximity, resulting in multiple exponential decays. In addition, the triplet transient absorption difference spectra of ttpy-Ph, ttpy-C6H4Br-4, ttpy-C6H4NO2-4, and ttpy-Quin exhibit moderately intense, broad absorption bands in the visible region and extending into the near-IR region, which likely originate from the same excited state that emits or from a state that is in equilibrium with the emitting state. It appears that the electron-rich arylacetylide ligands, especially 4-methoxyphenylacetylide and 4-dimethylaminophenylacetylide, cause a decrease of the emission efficiency and disappearance of the transient absorption. In contrast, the complexes that exhibit positive absorption bands in the visible spectral region of the triplet transient difference absorption spectra show substantial optical limiting for nanosecond laser pulses at 532 nm.  相似文献   

11.
Time-resolved transient absorption spectroscopy with sub-9 fs ultrashort laser pulses in the deep-ultraviolet (DUV) region is reported for the first time. Single 8.7 fs DUV pulses with a spectral range of 255-290 nm are generated by a chirped-pulse four-wave mixing technique for use as pump and probe pulses. Electronic excited state and vibrational dynamics are simultaneously observed for an aqueous solution of thymine over the full spectral range using a 128-channel lock-in detector. Vibrational modes of the electronic ground state and excited states can be observed as well as the decay dynamics of the electronic excited state. Information on the initial phase of the vibrational modes is extracted from the measured difference absorbance trace, which contains oscillatory structures arising from the vibrational modes of the molecule. Along with other techniques such as time-resolved infrared spectroscopy, spectroscopy with sub-9 fs DUV pulses is expected to contribute to a detailed understanding of the photochemical dynamics of biologically significant molecules that absorb in the DUV region such as DNA and amino acids.  相似文献   

12.
Here we demonstrate that pump-probe experiments can be carried out on microsecond to millisecond timescales using an electrostatic ion storage ring. As a test case, we have chosen protoporhyrin IX anions that have lifetimes with respect to dissociation after photoexcitation on this time scale. Ions were photoexcited on one side of the ring with either 430- or 535-nm light (pump) and then allowed to take a certain number of revolutions before they were photoexcited by a second laser pulse (probe) with wavelengths between 650 and 950 ran. If ions were first excited by the pump, an increased yield of neutral products caused by the absorption of red light was measured in a microchannel plate detector located on the other side of the ring. This implies that it is possible to pick out ions that were photoexcited by the pump pulse and to spectroscopically characterize these ions. We report absorption spectra of 535 ran photoexcited porphyrin anions, with time delays of 0.19 and 0.57 ms between the pump and probe pulses, and find that absorption occurs over a broad region in the red.  相似文献   

13.
A cyclometalated platinum(II) 4,6-diphenyl-2,2'-bipyridyl pentynyl complex (1) has been synthesized and structurally characterized. Its photophysical and third-order nonlinear optical properties have been systematically investigated. This complex exhibits a metal-to-ligand charge-transfer (1MLCT) absorption band between 400 and 500 nm and a 3MLCT emission band at approximately 591 nm at room temperature with a lifetime of approximately 100 ns. At 77 K, the emission band blue shifts. Both UV-vis absorption and emission spectra show solvent dependence. Low-polarity solvents cause a bathochromic shift of the absorption and emission bands. This complex also exhibits a broad and strong transient absorption from the near-UV to the near-IR spectral region, with a triplet absorption coefficient of 4933 L mol(-1) cm(-1) at 585 nm and a quantum yield of 0.51 for the formation of the triplet excited state. Nonlinear transmission and Z-scan techniques were employed to characterize the third-order nonlinearities of this complex. A strong and broadband reverse saturable absorption was observed for nanosecond and picosecond laser pulses due to the reduced ground-state absorption in the visible spectral range. It also exhibits a self-defocusing effect at 532 nm for nanosecond laser pulses. The excited-state absorption cross section deduced from the open-aperture Z-scan increases at longer wavelengths, with an exceptionally large ratio of excited-state absorption to ground-state absorption of 160 at 570 nm for picosecond laser pulses.  相似文献   

14.
We investigated by W-band (94 GHz) transient electron paramagnetic resonance (TREPR) and photoinduced absorption (PIA) spectroscopy two fullerene derivatives bearing a nitroxide radical unit. After pulsed laser photoexcitation of the molecules in liquid toluene solution, complex EPR spectra are recorded, with lines in absorption and emission. The intrinsic higher spectral and temporal resolution of the W-band frequency leads to the assignment of all the lines in the spectrum and the determination of the sign and the absolute value of the exchange coupling between the fullerene in its photoexcited triplet state (S(T) = 1) and the radical (S(R) = 1/2). The two compounds with different fullerene-nitroxide spacers show opposite-ferromagnetic and antiferromagnetic-exchange couplings. The time evolution of the spectra and the polarization of the lines are interpreted in terms of several possible spin polarization mechanisms. The EPR measurements are complemented with PIA experiments.  相似文献   

15.
The x-ray absorption near-edge spectra (XANES) and fluorescence spectra of molecules in the ground state and optically excited states are computed using time-dependent density functional theory and time-dependent Hartree-Fock theory. The calculated XANES spectra of optically excited methanol, benzonitrile, hydrogen sulphide, and titanium tetrachloride and the fluorescence spectra of optically excited methanol can be used to simulate ultrafast optical pump/x-ray probe experiments.  相似文献   

16.
The synthesis, solution and solid state structural characterization, photophysical and electrochemical properties of two redox forms of an electrochromic copper-bis(4,4′-dimethyl-6,6′-diphenyl-2,2′-bipyridine) complex, [Cu(3)2]n (n=+1, +2), are presented. Both complexes were characterized in the solid state by X-ray diffraction methods on single-crystals showing that both forms exist in a pseudo-tetrahedral coordination, and a comparison with other structures was made. Like most copper(I) complexes, the red [Cu(3)2]+ complex shows a rather weak emission (Φem=2.7×10−4, dichloromethane). The lifetime of the emitting MLCT state is 34±1 ns, as observed with time resolved emission, and transient absorption (in deoxygenated dichloromethane). Typical emission and transient absorption spectra are presented. The transient absorption spectra indicate that the MLCT state absorbs stronger than the ground state, which is relatively uncommon for metal bipyridine complexes, i.e. no ground state bleaching is observed. The green [(3)2Cu]2+ complex does not show any observable emission or transient absorption, which is a common feature for Cu(II) complexes of this type. The electronic absorption spectra of the chemically and electrochemically produced copper(I/II) complexes are identical. The repeated electrochemical conversion of the Cu(I) center into Cu(II) and vice versa does not cause any decomposition. This is consistent with a fully reversible Cu(I)/Cu(II) redox couple in the corresponding cyclic voltammogram, (E1/2 (Cu(I)/Cu(II))=+0.68 V vs. SCE=+0.23 V vs. Fc/Fc+). These observations indicate that no large structural reorganization occurs upon electrochemical timescales (sub second), and that the different ways of generating the complexes does not effect their final structure, apart from the small differences observed in the X-ray structures of both forms. These characteristics make these complexes rather well suited for their incorporation into an electrochromic display configuration.  相似文献   

17.
Steady-state absorption and emission spectroscopies, oxygen activation and transient spectroscopy on a single sample of synthetic pheomelanin are compared. The absorption, emission and excitation spectra of pheomelanin depend on the molecular weight (MW) of the dissolved pigment constituents. While weakly-depending on MW, the maximum of the emission excitation spectrum is approximately 400 nm. The electron paramagnetic resonance oximetry measurements show a clear increase in oxygen uptake between 338 and 323 nm, and also reveal a local enhancement around approximately 370 nm. Pump-probe absorption spectroscopy reveals that photoexcitation of pheomelanin by UVA light generates a transient absorption peak in the visible and UV regions within the instrument response. The action spectrum for the formation of the 780 nm transient species peaks at approximately 360 nm. While both transient absorption bands show the same ultrafast decay component, the 780 nm peak completely vanishes on the 10s of picosecond time scale, but the UV band shows a kinetic evolution to a subsequent intermediate. While in a similar wavelength range, the maximum of the action spectrum derived from the transient data, the emission excitation spectrum and the action spectrum for photoconsumption all differ from one another, suggesting that the chromophore responsible for each is not that same. This raises concern about comparing the results from different photochemical methodologies for melanin, which is a specific case of comparing data on systems where molecular constituents are not well defined.  相似文献   

18.
The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.  相似文献   

19.
We report femtosecond transient absorption kinetics measured for selected semiconducting single-walled carbon nanotubes at different temperatures between 77 and 290 K. The nanotubes are embedded in a thin polymethylmethacrylate film, and the dominance of individual species enabled to probe selectively the kinetics associated with two desired tube types, the (6,5) and (7,5) tubes. A strikingly similar temperature dependence is found between the maximum change in the amplitude of transient absorption kinetics, the overall decay time and steady-state fluorescence emission intensity. The simplest explanation for our data is that the temperature dependence of the fluorescence intensity and the exciton decay kinetics are dominated by nonradiative decay and that the radiative decay rate is weakly temperature dependent.  相似文献   

20.
Protochlorophyllide (Pchlide) is a natural porphyrin, a precursor of chlorophyll, synthesized by plants for its photosynthetic apparatus. The pigment spontaneously forms aggregates when dissolved in neat water solution. We present here calculations of the transient absorption spectra and its comprising components (ground-state bleach, stimulated emission, and excited-state absorption) for a strongly excitonically coupled linear chain of four Pchlide chromophores, using exciton theory with phenomenological Gaussian line shapes and without energetic disorder. A refined multiexciton model that includes static disorder is applied to fit the experimental power-dependent transient absorption spectra of aqueous protochlorophyllide and the kinetics for delay times up to 20 ps after photoexcitation. We show that population up to the 4-exciton manifold is sufficient to explain the pronounced saturation of the bleaching and the shape changes in the instantaneous, t = 0.2 ps transient spectra when the pulse energy is increased from 10 to 430 nJ per pulse. The decay of the multiexciton manifold is relatively slow and is preceded by a spectroscopically distinct process. We suggest that the exciton states in the Pchlide aggregates are mixed with charge-transfer states (CTS) and that the population and repopulation of the CTS coupled to the exciton states explains the relatively slow decay of the multiexciton manifold. The relevance of our results to the optical properties and dynamics of natural photosynthetic complexes and the possible physical origin of CTS formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号