首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).  相似文献   

2.
The equilibrium potential of saturated zinc amalgam is studied as a function of concentration of free ethylenediamine molecules, [en], in the region [en] 0.001–1 M in solutions of pH 9.5, 10.5, and 11.5. At the concentration of zinc(II) ions 2 × 10–3 M and [en] = 1 M only simple trisethylenediamine complexes of zinc(II) form in all the solutions. At smaller [en] and pH 9.5 and 10.5, complexes Zn(en)2 2+ and Zn(en)2OH+ are also present; these are complemented at pH 11.5 by Zn(en)2(OH)2 at [en] 0.005–0.1 M. Stability constants for these complexes are calculated.  相似文献   

3.
A new family of 14‐electron, four‐coordinate iron(II) complexes of the general formula [TptBu,MeFeX] (TptBu,Me is the sterically hindered hydrotris(3‐tert‐butyl‐5‐methyl‐pyrazolyl) borate ligand and X=Cl ( 1 ), Br, I) were synthesized by salt metathesis of FeX2 with TptBu,MeK. The related fluoride complex was prepared by reaction of 1 with AgBF4. Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four‐coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single‐crystal X‐ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high‐spin (d6, S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.  相似文献   

4.
Manganese(II) complexes of [18]py2N4: 3,6,14,17,23,24-hexaazatricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8(24),9,11,13,17,19,21-decane; [20]py2N4: 3,7,15,19,25,26-hexaazatricyclo[19.3.1.19,13]hexacosa-1(25),2,7,9(26),10,12,14,19,21,23-decaene; Bzo2[18]py2N4: 3,10,18,25,31,32-hexaazapentacyclo[25.3.1.1.12,16.04,9.019,24]dotriaconta 1(31),2,4(9),5,7,10,12(32),13,15,17,19,21,23,25,29-hexadecane and Bzo2[18]py2N4: 2,10,16,24,30,32-hexaazapentacyclo[23.3.1.14,8.11,1,15118,22otriaconta-1(29),2,4,6,8(32),9,11,13,15(31),16,18(30),19,21,23,25,27-hexadecane have been encapsulated in the nanopores of zeolite-Y by the template condensation reaction. Mn(II) complexes with macrocyclic ligand were entrapped in the nanocavity of zeolite-Y by a two-step process in the liquid phase: (i) the adsorption of [bis(diamine)manganese(II)]; [Mn(diamine)2]2+@NaY; in the supercages of the zeolite, and (ii) in situ condensation of the manganese(II) precursor complex with 2,6-diacetylpyridine. The new complex nanoparticles entrapped in the nanoreactor of zeolite-Y have been characterized by FT-IR, diffuse reflectance (DRS), X-ray photoelectron (XPS), thermal analysis, UV–Vis spectroscopic techniques, X-ray diffraction (XRD) and elemental analysis as well as by nitrogen adsorption.  相似文献   

5.
Five new mononuclear zinc(II) complexes containing ligands with extended planar phenanthroline moieties (dipyrido‐[3,2‐a:2′,3′‐c]phenazine (dppz) or dipyrido[3,2‐d:2′,3′‐f] quinoxaline (dpq)), namely [Zn(dppz)(acac)2]⋅CH3OH ( 1 ), [Zn(dppz)(dbm)(OAc)] ( 2 ), [Zn(dpq)(dbm) (OAc)] 1.5H2O ( 3 ), [Zn(dpq)(tfnb)(OAc)] ( 4 ) and [Zn(dpq)(tfnb)2] ( 5 ), where acac = acetylacetonate, tfnb = benzoyltrifluoroacetone and dbm = dibenzoylmethane, were synthesized and structurally characterized. The binding ability of complexes 1 – 5 with calf thymus DNA was investigated by spectroscopic titration methods and viscosity measurements. Results indicate that all complexes bind to calf thymus DNA via intercalative mode, and the DNA binding affinities of dppz complexes 1 and 2 are apparently stronger than those of dpq complexes 3 – 5 . DNA photocleavage experiments reveal that these complexes are efficient DNA cleaving agents and they are more active in UV‐A (365 nm) than in visible light. In particular, the in vitro cytotoxicity of the complexes for human cancer cell line A549 demonstrates that the five compounds have anticancer activity with low IC50 values. Meanwhile, interaction of the complexes with bovine serum albumin investigated using UV–visible and fluorescence methods indicates that all complexes can quench the intrinsic fluorescence of bovine serum albumin in a static quenching process.  相似文献   

6.
A new series of binuclear unsymmetrical compartmental oxime complexes (15) [M2L] [M=Cu(II), Ni(II)] have been synthesized using mononuclear complex [ML] (L=1,4-bis[2-hydroxy-3-(formyl)-5-methylbenzyl]piperazine), hydroxylamine hydrochloride and triethylamine. In this system there are two different compartments, one has piperazinyl nitrogens and phenolic oxygens and the other compartment has two oxime nitrogens and phenolic oxygens as coordinating sites. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the complexes show two step single electron quasi-reversible redox processes at cathodic potential region. For copper complexes E1 pc=−0.18 to −0.62 and E2 pc=−1.18 to −1.25 V, for nickel complexes E1 pc=−0.40 to −0.63 and E2 pc=−1.08 to −1.10 V and reduction potentials are sensitive towards the chemical environment around the copper and nickel atoms. The nickel(II) complexes undergo two electrons oxidation. The first one electron oxidation is observed around +0.75 V and the second around +1.13 V. ESR Spectra of the binuclear copper(II) complexes [Cu2L](ClO4), [Cu2L(Cl)], [Cu2L(NO3)] shows a broad signal at g=2.1 indicating the presence of coupling between the two copper centers. Copper(II) complexes show a magnetic moment value of μeff around 1.59 B.M at 298 K and variable temperature magnetic measurements show a −2J value of 172 cm−1 indicating presence of antiferromagnetic exchange interaction between copper(II) centres.  相似文献   

7.
The cationic complexes, [TpRNi(bpym)]+ {TpR = tris(3,5-diphenylpyrazolyl)borate, R = Ph2 1; tris(3-phenyl-5-methylpyrazolyl)borate, R = Ph,Me 2} were synthesized by reacting [TpRNiBr] (R = Ph2; Ph,Me) with bipyrimidine followed by subsequent addition of KPF6 in CH2Cl2. The green solids have been characterized by IR, UV–Vis and 1H NMR spectroscopy. Crystallographic studies of [TpPh,MeNi(bpym)]PF6 reveal a five-coordinate square pyramidal nickel centre with a κ3-coordinated TpPh,Me ligand and a chelating bipyrimidine ligand. Cyclic voltammetric studies show irreversible reduction with the degree of reversibility dependent on the type of TpR ligand.  相似文献   

8.
Two iron(II) complexes, [FeII(pytBuN3)2](FeCl4) (1) and [FeII(pytBuMe2N3)Cl2] (2), with sterically constrained pytBuN3 and pytBuMe2N3 chelate ligands (pytBuN3 = 2,6-bis-(aldiimino)pyridyl; pytBuMe2N3 = 2,6-bis-(ketimino)pyridyl), have been synthesized and characterized by elemental analysis, IR, UV–vis spectra, and preliminary X-ray single-crystal diffraction. The latter revealed that Fe(II) in 1 is six-coordinate by six nitrogen donors from two bisiminopyridines in a distorted octahedron. Complex 2 reacts with thiourea with a second-order rate constant k2 = (2.50 ± 0.05) × 10?3 M?1 s?1 at 296 K, and the reaction seemed to be slow. In a similar way, the interaction of 2 and DNA was studied by fluorescence and absorption spectroscopy. The results revealed that 2 caused fluorescence quenching of DNA through a dynamic quenching procedure. The binding constants KA, Kapp, and KSV as well as the number of binding sites between 2 and DNA were determined.  相似文献   

9.
《Polyhedron》2001,20(15-16):2045-2053
Two new poly(pyrazolyl)borate ligands have been prepared: potassium tris[3-{(4-tbutyl)-pyrid-2-yl}-pyrazol-1-yl]hydroborate (KTpBuPy) which has three bidentate arms and is therefore hexadentate; and potassium bis[3-(2-pyridyl)-5-(methoxymethyl)pyrazol-1-yl]-dihydroborate (KBp(COC)Py) which has two bidentate arms and is therefore tetradentate. The crystal structures of their lanthanide complexes [La(TpBuPy)(NO3)2] and [La(Bp(COC)Py)2X] (X=nitrate or triflate) have been determined. In [La(TpBuPy)(NO3)2] the metal ion is ten-coordinate, from the hexadentate N-donor podand ligand and two bidentate nitrates. [La(Bp(COC)Py)2(NO3)] is also ten-coordinate, from two tetradentate ligands and a bidentate nitrate, but in [La(Bp(COC)Py)2(CF3SO3)] the metal ion is nine-coordinate because the triflate anion is monodentate. Two unexpected new complexes which arose from partial decomposition of the poly(pyrazolyl)borate ligands have also been characterised structurally. In [La(BuPypzH)3(O3SCF3)3] the metal ion is nine-coordinate from three bidentate pyrazolyl-pyridine arms (liberated by decomposition of KTpBuPy) and three triflate anions; there is extensive NH· · · O hydrogen-bonding between the pyrazolyl and triflate ligands. [Nd(TpPy)(BpPy)][Nd(PypzH)(NO3)4] was isolated from the reaction of hexadentate tris[3-(2-pyridyl)-pyrazol-1-yl]hydroborate (TpPy) with Nd(NO3)3. One of the TpPy ligands has lost one bidentate pyrazolyl-pyridine ‘arm’ (PypzH) to leave tetradentate tris[3-(2-pyridyl)-pyrazol-1-yl]dihydroborate (BpPy). In this structure, the cation [Nd(TpPy)(BpPy)]+ is ten-coordinate from inter-leaved hexadentate and tetradentate ligands, and the anion [Nd(PypzH)(NO3)4] is also ten-coordinate from the bidentate N-donor ligand PypzH and four bidentate nitrates.  相似文献   

10.
Four new zinc(II) complexes formulated as [Zn(L)2] (1), [Zn(L)2(phen)] (2), [Zn(L)2(bipy)H2O] (3), and [Zn(en)2(H2O)2](L)2(H2O)2 (4), where HL = 4-methyl trans-cinnamic acid, bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline, and en = ethylenediamine, have been synthesized and characterized by FT-IR and NMR spectroscopy. Single-crystal XRD revealed distorted square-pyramidal structure for 3 and octahedral for 4. The complexes were screened for DNA interaction via viscommetry and UV–visible spectroscopy. The apparent binding constants were calculated to be 1.18 × 104, 1.26 × 105, 4.64 × 104, and 1.89 × 104 for 14, respectively. The binding propensity to salmon sperm DNA was in the order: K2 > K3 > K4 > K1. Furthermore, these complexes demonstrated efficient inhibition of alkaline phosphatase, which was attributed to the binding of zinc(II) to the enzyme’s active site.  相似文献   

11.
Summary.  The complexes RuTp(cod)X (X = Br (2), I (3), CN (4)) have been obtained by the reaction of RuTp(cod)Cl (1) with KX in boiling MeOH in high yields. The cationic complexes [RuTp(cod)(py)]+ (5), [RuTp(cod)(dmso)]+ (6), and [RuTp(cod)(CH3CN)]+ (7) were prepared as the CF3SO3 salts by reacting 1 with 1 equivalent of AgCF3SO3 in the presence of the respective co-ligand in CH2Cl2. The crystal structures of 1, 3, 4, 5, 6, and 7 are reported. Structural features are discussed in conjunction with 1H, 13C, and 15N NMR spectroscopic data revealing a linear correlation of 15N chemical shifts and Ru-N (trans to X(L)) bond distances. Received August 31, 2000. Accepted (revised) October 23, 2000  相似文献   

12.
Ruthenium(II) arene complexes of the general formula [RuCl(η6-p-cymene)(diamine)]PF6 (diamine = 1,2-diaminobenzene (1), 2,3-diaminonaphthalene (2), 9,10-diaminophenanthrene (3), 2,3-diaminophenazine (4), and 1,2-diaminoanthraquinone (5) were synthesized. Chloro/aqua exchange was evaluated experimentally for complexes 1 and 2. The exchange process was investigated theoretically for all complexes, revealing relatively fast exchange with no significant influence from the polycyclic aromatic diamines. The calf thymus DNA (CT-DNA) binding of the complexes increased dramatically upon extending the aromatic component of the diamines, as evaluated by changes in absorption spectra upon titration with different concentrations of CT-DNA. An intercalation binding mode was established for the complexes using the increase in the relative viscosity of the CT-DNA following addition of complexes 1 and 2. Theoretical studies showed strong preference for replacement of water by guanine for all the complexes, and relatively strong Ru–Nguanine bonds. The plane of the aromatic systems can assume angles that support non-classical interactions with the DNA and covalent binding, leading to higher binding affinities. The ruthenium arenes illustrated in this study have promising anticancer activities, with the half maximal inhibitory concentration (IC50) values comparable to or better than cisplatin against three cell lines.  相似文献   

13.
A transition metal complex as an electrochemical probe of a DNA sensor must have an applicable redox potential, high binding affinity and chemical stability. Some complexes with the dipyrido[3,2-a:2′,3′-c]phenazine (DPPZ) ligand have been reported to have high binding affinity for DNA. However, it was difficult to detect the targeted DNA electrochemically using these complexes because of the relatively high redox potential. In this work, a combination of bipyridine ligands with functional groups (---NH2, ---CH3 and ---COOH) and the DPPZ ligand were studied. The introduction of electron-donating groups was effective for controlling the redox potential of the DPPZ-type osmium complex. The [Os(DA-bpy)2DPPZ]2+ complex (DA-bpy; 4,4′-diamino-2,2′-bipyridine) had a lower half-wave potential (E1/2) of 147 mV (vs. Ag AgCl) and higher binding affinity with DNA {binding constant, K=3.1×107 M−1 in 10 mmol dm−3 Tris–HCl buffer with 50 mmol dm−3 NaCl (pH 7.76)} than those of other complexes. With the single stranded DNA (ssDNA) modified gold electrode, the hybridization signal (ΔI) of the [Os(DA-bpy)2DPPZ]2+ complex was linear in the concentration range of 1.0 pg ml−1–0.12 μg ml−1 for the targeted DNA with a regression coefficient of 0.999. The detection limit was 0.1 pg ml−1.  相似文献   

14.
A series of new manganese(I) and ruthenium(II) monometallic and bimetallic complexes made of 2,2′-bipyridine and 1,10-phenanthroline ligands, [Mn(CO)3(NN)(4,4′-bpy)]+, [{(CO)3(NN)Mn}2(4,4′-bpy)]2+ and [(CO)3(NN)Mn(4,4′-bpy)Ru(NN)2Cl]2+ (NN = 2,2′-bipyridine, 1,10-phenanthroline; 4,4′-bpy = 4,4′-bipyridine) are synthesized and characterized, in addition to already known ruthenium(II) complexes [Ru(NN)2Cl(4,4′-bpy)]+ and [Cl(NN)2Ru(4,4′-bpy)Ru(NN)2Cl]2+. The electrochemical properties show that there is a weak interaction between two metal centers in Mn–Ru heterobimetallic complexes. The photophysical behavior of all the complexes is studied. The Mn(I) monometallic and homobimetallic complexes have no detectable emission. In Mn–Ru heterobimetallic complexes, the attachment of Mn(I) with Ru(II) provides interesting photophysical properties.  相似文献   

15.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

16.
Four new drug-based oxidovanadium (IV) complexes were synthesized and characterized by various spectral techniques, including molar conductance, magnetic measurements, and thermogravimetric analysis. Moreover, optimal structures geometry for all syntheses was obtained by the Gaussian09 program via the DFT/B3LYP method and showed that all of the metal complexes adopted a square-pyramidal structure. The essential parameters, electrophilicity (ω) value and expression for the maximum charge that an electrophile molecule may accept (ΔNmax) showed the practical biological potency of [VO(CTZ)2] 2H2O. The complexes were also evaluated for their propensity to bind to DNA through UV–vis absorption titration. The result revealed a high binding ability of the [VO(CTZ)2] 2H2O complex with Kb = 1.40 × 10⁶ M−1. Furthermore, molecular docking was carried out to study the behavior of the VO (II) complexes towards colon cancer cell (3IG7) protein. A quantitative structure–activity relationship (QSAR) study was also implemented for the newly synthesized compounds. The results of validation indicate that the generated QSAR model possessed a high predictive power (R2 = 0.97). Within the investigated series, the [VO(CTZ)2] 2H2O complex showed the greatest potential the most selective compound comparing to the stander chemotherapy drug.  相似文献   

17.
Zhang  Qian-Ling  Xu  Hong  Li  Hong  Liu  Jie  Liu  Jian-Zhong  Ji  Liang-Nian  Liu  Jin-Gang 《Transition Metal Chemistry》2002,27(2):149-154
Two novel complex ions [Co(bpy)2IP]3+ and [Co(bpy)2PIP]3+, have been prepared and characterized by EA, mass spectra, u.v.–vis., and cyclic voltammetry. The binding behavior of both complexes to calf thymus DNA (CT-DNA) has been investigated by spectroscopic methods, cyclic voltammetry, and viscosity measurements. The results suggest that both complexes bind to DNA by intercalation. Both promote cleavage of plasmid pBR 322 DNA from the supercoiled Form I to the open circular Form II upon irradiation. Mechanisms for photocleavage are proposed.  相似文献   

18.
New polypyridyl osmium(II) complexes [Os(κ3-tptz)(EPh3)2Cl]BF4 (E = P, 1; As, 2) with group 15 donor ligands are reported. Structural studies on the representative complex [Os(κ3-tptz)(PPh3)2Cl]BF4 revealed formation of helical racemates with sidewise stacking of right and left-handed anti-parallel helical strands. Salient structural features and DNA binding studies along with binding constant [6.6 × 103 M−1] and site size [0.12] of the complex 1 with calf thymus (ct) DNA by absorption spectroscopy are described.  相似文献   

19.
Four complexes, namely [Zn2L1(OAc)2](PF6) ( 1 ); [Zn2L1(OAc)2](BPh4) ( 2 ); [Co2L1Cl2](PF6) ( 3 ); and [Zn2L2(PhCOO)2Cl] ( 4 ) (L1 = 2,6‐bis(((2‐(dimethylamino)ethyl)(pyridine‐2‐ylmethyl)amino)methyl)‐4‐methoxyphenol; L2 = 2‐(((2‐(dimethylamino)ethyl)(pyridin‐2‐ylmethyl)amino)methyl)‐4‐methoxyphenol), have been synthesized. Single‐crystal diffraction reveals that the metal atoms in the four complexes are in different coordination environments. The interactions of the complexes with calf thymus DNA (CT‐DNA) have been investigated using UV absorption, fluorescence and circular dichroism spectroscopies and viscosity measurements, and the modes of CT‐DNA binding for the complexes have been proposed. Further experiments show that the Zn(II)/H2O2 system displays significant oxidative cleavage of supercoiled DNA attributed to the peroxide ion coordinated to the Zn(II) ions enhancing their nucleophilicity. This is a rare phenomenon. DNA cleavage mechanism shows that the complexes examined here may be capable of promoting DNA cleavage through an oxidative DNA damage pathway, which is indicative of the involvement of singlet oxygen in the cleavage process. In vitro cytotoxicity of complexes against three human tumor cell lines (HeLa, MCF‐7 and HepG2) demonstrates that these complexes have the potential to act as effective metal‐based anticancer drugs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Raman spectra of aqueous Zn(II)–perchlorate solutions were measured over broad concentration (0.50–3.54 mol-L–1) and temperature (25–120°C) ranges. The weak polarized band at 390 cm–1 and two depolarized modes at 270 and 214 cm–1 have been assigned to 1(a 1g), 2(e g), and 5(f 2g) of the zinc–hexaaqua ion. The infrared-active mode at 365 cm–1 has been assigned to 3(f 1u). The vibrational analysis of the species [Zn(OH2) 2 + ] was done on the basis of O h symmetry (OH2 as point mass). The polarized mode 1(a 1g)-ZnO6 has been followed over the full temperature range and band parameters (band maximum, full width at half height, and intensity) have been examined. The position of the 1(a 1g)-ZnO6 mode shifts only about 4 cm–1 to lower frequencies and broadens by about 32 cm–1 for a 95°C temperature increase. The Raman spectroscopic data suggest that the hexaaqua–Zn(II) ion is thermodynamically stable in perchlorate solution over the temperature and concentration range measured. These findings are in contrast to ZnSO4 solutions, recently measured by one of us, where sulfate replaces a water molecule of the first hydration sphere. Ab initio geometry optimizations and frequency calculations of [Zn(OH2) 2 + ] were carried out at the Hartree–Fock and second-order Møller–Plesset levels of theory, using various basis sets up to 6-31 + G*. The global minimum structure of the hexaaqua–Zn(II) species corresponds with symmetry T h. The unscaled vibrational frequencies of the [Zn(OH2) 2 + ] are reported. The unscaled vibrational frequencies of the ZnO6, unit are lower than the experimental frequencies (ca. 15%), but scaling the frequencies reproduces the measured frequencies. The theoretical binding enthalpy for [Zn(OH2) 2 + ] was calculated and accounts for ca. 66% of the experimental single-ion hydration enthalpy for Zn(II).Ab initio geometry optimizations and frequency calculations are also reported for a [Zn(OH2) 2 18 ] (Zn[6 + 12]) cluster with 6 water molecules in the first sphere and 12 in the second sphere. The global minimum corresponds with T symmetry. Calculated frequencies of the zinc [6 + 12] cluster correspond well with the observed frequencies in solution. The 1-ZnO6 (unscaled) mode occurs at 388 cm–1 almost in perfect correspondence to the experimental value. The theoretical binding enthalpy for [Zn(OH2) 2 18 ] was calculated and is very close to the experimental single ion-hydration enthalpy for Zn(II). The water molecules of the first sphere form strong hydrogen bonds with water molecules in the second hydration shell because of the strong polarizing effect of the Zn(II) ion. The importance of the second hydration sphere is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号