首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 μM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts.  相似文献   

2.
Callus, suspension and bioreactor cultures of Verbena officinalis were established, and optimized for biomass growth and production of phenylpropanoid glycosides, phenolic acids, flavonoids and iridoids. All types of cultures were maintained on/in the Murashige and Skoog (MS) media with 1 mg/L BAP and 1 mg/L NAA. The inoculum sizes were optimized in callus and suspension cultures. Moreover, the growth of the culture in two different types of bioreactors—a balloon bioreactor (BB) and a stirred-tank bioreactor (STB) was tested. In methanolic extracts from biomass of all types of in vitro cultures the presence of the same metabolites—verbascoside, isoverbascoside, and six phenolic acids: protocatechuic, chlorogenic, vanillic, caffeic, ferulic and rosmarinic acids was confirmed and quantified by the HPLC-DAD method. In the extracts from lyophilized culture media, no metabolites were found. The main metabolites in biomass extracts were verbascoside and isoverbascoside. Their maximum amounts in g/100 g DW (dry weight) in the tested types of cultures were as follow: 7.25 and 0.61 (callus), 7.06 and 0.48 (suspension), 7.69 and 0.31 (BB), 9.18 and 0.34 (STB). The amounts of phenolic acids were many times lower, max. total content reached of 26.90, 50.72, 19.88, and 36.78 mg/100 g DW, respectively. The highest content of verbascoside and also a high content of isoverbascoside obtained in STB (stirred-tank bioreactor) were 5.3 and 7.8 times higher than in extracts from overground parts of the parent plant. In the extracts from parent plant two iridoids—verbenalin and hastatoside, were also abundant. All investigated biomass extracts and the extracts from parent plant showed the antiproliferative, antioxidant and antibacterial activities. The strongest activities were documented for the cultures maintained in STB. We propose extracts from in vitro cultured biomass of vervain, especially from STB, as a rich source of bioactive metabolites with antiproliferative, antioxidant and antibacterial properties.  相似文献   

3.
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL).  相似文献   

4.
Variations of phenolics, antioxidant activity, and mineral contents in peel and pulp of five apple (Malus domestica Borkh.) cultivars from Pakistan, namely Red Delicious, Golden Delicious, Kashmiri Amri, Kala Kulu and Sky Spur were appraised. The mean extract yield of antioxidant components obtained with 80:20 methanol-water (v/v), was found to be 22.1 g/100 g for peel and 14.2 g/100 g for pulp on a dry weight basis. The amounts of total phenolics and total flavonoids in peel and pulp of different cultivars of apple ranged from 1,907.5-2,587.9 mg gallic acid equivalent/100 g DW and 1,214.3-1,816.4 mg catechin equivalent/100 g DW and 1,185.2-1,475.5 mg GAE/100 g DW and 711.8-999.3 mg CE/100 g DW, respectively. The inhibition of linoleic acid peroxidation and DPPH scavenging activity of the extracts varied from 71.7-84.9 and 66.6-80.8% in peel, and 43.9-52.8 and 42.9-51.1% in pulp, respectively. Reducing power of the tested fruit part extracts at concentration 12.5 mg/mL ranged from 2.54-2.89 and 1.37-1.73, respectively. With regard to minerals analysis, both fruit parts showed the amount of K to be the highest, followed by Mg, Ca, Fe, Na and Zn. The results revealed that peel of the tested apple cultivars in this study had superior antioxidant capacity and mineral concentration than the pulp, indicating significant variations between the parts tested. Thus, consumption of apple fruits along with peel might be recommended to gaining better nutritive benefits.  相似文献   

5.
Fungal mycelium cultures are an alternative to natural sources in order to obtain valuable research materials. They also enable constant control and adaptation of the process, thereby leading to increased biomass growth and accumulation of bioactive metabolites. The present study aims to assess the biosynthetic potential of mycelial cultures of six Ganoderma species: G. adspersum, G. applanatum, G. carnosum, G. lucidum, G. pfeifferi, and G. resinaceum. The presence of phenolic acids, amino acids, indole compounds, sterols, and kojic acid in biomass extracts was determined by HPLC. The antioxidant and cytotoxic activities of the extracts and their effects on the inhibition of selected enzymes (tyrosinase and acetylcholinesterase) were also evaluated. The total content of phenolic acids in the extracts ranged from 5.8 (G. carnosum) to 114.07 mg/100 g dry weight (d.w.) (G. pfeifferi). The total content of indole compounds in the extracts ranged from 3.03 (G. carnosum) to 11.56 mg/100 g d.w. (G. lucidum) and that of ergosterol ranged from 28.15 (G. applanatum) to 74.78 mg/100 g d.w. (G. adspersum). Kojic acid was found in the extracts of G. applanatum and G. lucidum. The tested extracts showed significant antioxidant activity. The results suggest that the analyzed mycelial cultures are promising candidates for the development of new dietary supplements or pharmaceutical preparations.  相似文献   

6.
Inflammation is the body’s response to infection or tissue injury in order to restore and maintain homeostasis. Prostaglandin E2 (PGE-2) derived from arachidonic acid (AA), via up-regulation of cyclooxygenase-2 (COX-2), is a key mediator of inflammation and can also be induced by several other factors including stress, chromosomal aberration, or environmental factors. Targeting prostaglandin production by inhibiting COX-2 is hence relevant for the successful resolution of inflammation. Waltheria indica L. is a traditional medicinal plant whose extracts have demonstrated COX-2 inhibitory properties. However, the compounds responsible for the activity remained unknown. For the preparation of extracts with effective anti-inflammatory properties, characterization of these substances is vital. In this work, we aimed to address this issue by characterizing the substances responsible for the COX-2 inhibitory activity in the extracts and generating prediction models to quantify the COX-2 inhibitory activity without biological testing. For this purpose, an extract was separated into fractions by means of centrifugal partition chromatography (CPC). The inhibitory potential of the fractions and extracts against the COX-2 enzyme was determined using a fluorometric COX-2 inhibition assay. The characterizations of compounds in the fractions with the highest COX-2 inhibitory activity were conducted by high resolution mass spectrometry (HPLC-MS/MS). It was found that these fractions contain alpha-linolenic acid, linoleic acid and oleic acid, identified and reported for the first time in Waltheria indica leaf extracts. After analyzing their contents in different Waltheria indica extracts, it could be demonstrated that these fatty acids are responsible for up to 41% of the COX-2 inhibition observed with Waltheria indica extract. Additional quantification of secondary metabolites in the extract fractions revealed that substances from the group of steroidal saponins and triterpenoid saponins also contribute to the COX-2 inhibitory activity. Based on the content of compounds contributing to COX-2 inhibition, two mathematical models were successfully developed, both of which had a root mean square error (RMSE) = 1.6% COX-2 inhibitory activity, demonstrating a high correspondence between predicted versus observed values. The results of the predictive models further suggested that the compounds contribute to COX-2 inhibition in the order linoleic acid > alpha linolenic acid > steroidal saponins > triterpenoid saponins. The characterization of substances contributing to COX-2 inhibition in this study enables a more targeted development of extraction processes to obtain Waltheria indica extracts with superior anti-inflammatory properties.  相似文献   

7.
In order to extract antioxidant phenolic compounds from spent grain (SG) two extraction methods were studied: the ultrasound-assisted method (US) and the Ultra-Turrax method (high stirring rate) (UT). Liquid to solid ratios, solvent concentration, time, and temperature/stirring rate were optimized. Spent grain extracts were analyzed for their total phenol content (TPC) (0.62 to 1.76 mg GAE/g SG DW for Ultra-Turrax pretreatment, and 0.57 to 2.11 mg GAE/g SG DW for ultrasound-assisted pretreatment), total flavonoid content (TFC) (0.6 to 1.67 mg QE/g SG DW for UT, and 0.5 to 1.63 mg QE/g SG DW for US), and antioxidant activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical (25.88% to 79.58% for UT, and 27.49% to 78.30% for UT). TPC was greater at a high stirring rate and high exposure time up to a certain extent for the Ultra-Turrax method, and at a high temperature for the ultrasound-assisted method. P-coumaric acid (20.4 ± 1.72 mg/100 SG DW for UT, and 14.0 ± 1.14 mg/100 SG DW for US) accounted for the majority of the phenolic found compounds, followed by rosmarinic (6.5 ± 0.96 mg/100 SG DW for UT, and 4.0 ± 0.76 mg/100 SG DW for US), chlorogenic (5.4 ± 1.1 mg/100 SG DW for UT, and non-detectable for US), and vanillic acids (3.1 ± 0.8 mg/100 SG DW for UT, and 10.0 ± 1.03 mg/100 SG DW for US) were found in lower quantities. Protocatechuic (0.7 ± 0.05 mg/100 SG DW for UT, and non-detectable for US), 4-hydroxy benzoic (1.1 ± 0.06 mg/100 SG DW for UT, and non-detectable for US), and caffeic acids (0.7 ± 0.03 mg/100 SG DW for UT, and non-detectable for US) were present in very small amounts. Ultrasound-assisted and Ultra-Turrax pretreatments were demonstrated to be efficient methods to recover these value-added compounds.  相似文献   

8.
Three species from the Eryngium L. genus—E. campestre, E. maritimum, and E. planum, plants with a rich chemical composition, were selected for phytochemical and biological studies. The applied biotechnological methods allowed to obtain the biomass of these rare or protected species in the form of multiplied shoots (stationary system) and roots cultured in a liquid medium (agitated system). In the extracts from the raw material obtained under in vitro conditions, the content of selected phenolic acids and flavonoids (HPLC-DAD method) as well as the total of polyphenols (Folin–Ciocalteu assay) were quantified. The highest amount of all phenolic compounds was found in extracts from E. planum roots (950.90 ± 33.52 mg/100 g d.w.), and the lowest from E. campestre roots (285.00 ± 10.07 mg/100 g d.w.). The quantitatively dominant compound proved to be rosmarinic acid. The highest amounts were confirmed for E. planum root extract (694.58 mg/100 g d.w.), followed by E. planum (388.95 mg/100 g d.w.) and E. campestre (325.85 mg/100 g d.w.) shoot extracts. The total content of polyphenols was always increased in the biomass from in vitro cultures in comparison to the analogous organs of intact plants of each species. The obtained extracts were assessed for antiprotozoal activity against Acanthamoeba sp. The strength of biological activity of the extracts correlated with the content of phenolic compounds. To our knowledge, this is the first report on the amoebicidal activity of E. campestre, E. maritimum, and E. planum extracts from biomass produced by biotechnological methods.  相似文献   

9.
The contents of free phenolic acids and cinnamic acid were determined using an HPLC method in methanolic extracts from biomass of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) at different stages of organogenesis, cultured in vitro on a few variants of Murashige and Skoog (MS) medium, containing different concentrations of plant growth regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (from 0.1 to 3.0 mg/l) and in extracts from overground parts of plants growing in vivo. Six of 12 analysed compounds were detected in all extracts: chlorogenic, p-coumaric, p-hydroxybenzoic, protocatechuic, salicylic and syringic acids. Total contents of the examined metabolites in biomass of shoot-differentiating callus culture cultivated on six MS medium variants were dependent on concentrations of growth regulators in the media and ranged from 14.90 to 60.05 mg/100 g d.w. Total contents of the compounds in biomass extracts from undifferentiating callus culture maintained only on two of six MS medium variants were higher and amounted to 74.54 and 78.24 mg/100 g d.w. Maximum total contents of phenolic acids in both types of in vitro cultures were greater than in fruits (55.73 mg/100 g d.w.) and leaves (4.55 mg/100 g d.w.) of plants gowning in vivo. Chlorogenic acid and salicylic acid were the main compounds identified in biomass extracts of shoot-differentiating callus cultures (max 22.60 and 21.17 mg/100 g d.w., respectively), while chlorogenic acid (max 38.43 mg/100 g d.w.) and protocatechuic acid (max 20.95 mg/100 g d.w.) prevailed in the extracts from undifferentiating callus cultures. Other compounds dominated in fruits, namely p-coumaric acid (23.36 mg/100 g d.w.) and syringic acid (14.96 mg/100 g d.w.). This is the first report on biochemical potential of cells from S. chinensis in vitro cultures to produce the biologically active phenolic acids. These are the first results on the analysis of this group of metabolites in overground parts of plants growing in vivo, too.  相似文献   

10.
This study appraises the antioxidant and antimicrobial attributes of various solvent extracts (absolute methanol, aqueous methanol, absolute ethanol, aqueous ethanol, absolute acetone, aqueous acetone, and deionized water) from bark, leaves and seeds of Pongamia pinnata (L.) Pierre. Maximum extraction yield of antioxidant components from bark (16.31%), leaves (11.42%) and seeds (21.51%) of P. pinnata was obtained using aqueous methanol (20:80). Of the extracts tested, the bark extract, obtained with aqueous methanol, exhibited greater levels of total phenolics [6.94 g GAE/100 g dry weight (DW)], total flavonoids (3.44 g CE/100 g DW), inhibition of linoleic acid peroxidation (69.23%) and DPPH radical scavenging activity (IC(50) value, 3.21 μg/mL), followed by leaves and seeds extracts. Bark extract tested against a set of bacterial and fungal strains also revealed the strongest antimicrobial activity with the largest inhibition zone and lowest minimum inhibitory concentration (MIC). HPLC analysis of aqueous methanol extracts from bark, leaves and seeds indicated the presence of protocatechuic, ellagic, ferulic, gallic, gentisic, 4-hydroxybenzoic and 4-hydroxycinnamic acids in bark (1.50-6.70 mg/100 g DW); sorbic, ferulic, gallic, salicylic and p-coumaric acids in leaves (1.18-4.71 mg/100 g DW); vanillic, gallic and tannic acids in seeds (0.52-0.65 mg/100 g DW) as the main phenolic acids. The present investigation concludes that the tested parts of P. pinnata, in particular the bark, have strong potential for the isolation of antioxidant and antimicrobial agents for functional food and pharmaceutical uses.  相似文献   

11.
This paper describes the antioxidant and antimicrobial activities and phenolic components of different solvent (absolute methanol, absolute ethanol, absolute acetone, 80% methanol, 80% ethanol, 80% acetone and deionized water) extracts of leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. The extract yields from leaves, flowers and bark ranged from 10.19 to 36.24, 12.97 to 48.47 and 4.22 to 8.48 g/100 g dry weight (DW), respectively. Overall, 80% methanol extract produced from the leaves exhibited significantly (P < 0.05) higher antioxidant activity, with high phenolic contents (3.63 g GAE/100 g DW), total flavonoid contents (1.19 g CE/100 g DW), inhibition of peroxidation (85.54%), DPPH scavenging capacity (IC(50) value 8.89 μg/mL) and reducing power (1.87). Similarly, this 80% methanol leaves extract also showed superior antimicrobial activity. HPLC analysis of the 80% methanol extracts for individual phenolics revealed the presence of gallic, protocatechuic and salicylic acid in leaves; gallic, protocatechuic, salicylic, trans-cinnamic and chlorogenic acid in flowers, and gallic acid in bark as the main (amount > 1.50 mg/100 g DW) phenolic acids. Besides, small amounts ( < 1.50 mg/100 g DW) of some other phenolic acids such as sorbic, sinapic, p-coumaric, m-coumaric, ferulic, caffeic, 3-hydroxybenzoic, 4-hydroxycinnamic and 4-hydroxybenzoic acids were also detected. The extracts of the tested parts of Gold Mohar, especially, the leaves, might be valuable for functional food and therapeutic applications.  相似文献   

12.
Lithocarpus polystachyus leaves exhibit antidiabetic activity and is consumed as a herbal tea in China. In this study, phytochemical profiles of L. polystachyus leaves were identified and characterized by ultra-high-performance liquid chromatography–quadrupole time-of-flight–MS in both positive and negative ion modes. A total of 17 compounds were tentatively characterized and identified by accurate mass and characteristic fragment ions. The total phenolic contents in the leaf extracts ranged from 9.0 to 13.4 g gallic acid equivalents/100 g of dry weight (DW). In addition, the effect of these extracts on inhibiting the activities of α-glucosidase and protein tyrosine phosphatase 1B (PTP1B) were evaluated. L. polystachyus extracts demonstrated significant inhibition of α-glucosidase (more than 88.1% at a concentration of 1.25 mg/mL) and acarbose (93.6% at a concentration of 5 mg/mL) while the PTP1B inhibition rate was over 84.3%. The antioxidant capacities of the leaf extracts were determined using 2,2-diphenyl-1-picrylhydrazyl, ABTS, and ferric reducing ability of plasma methods and ranged from 50.5 to 72.5 g trolox, from 43.2 to 77.7 g trolox, and from 5.0 to 10.6 g butylated hydroxytoluene (BHT; equaling trolox or BHT per 100 g of DW), respectively. Based on these results, L. polystachyus can be considered as a functional food owing to its antidiabetic and antioxidative activities, which are attributed to its rich phenolic and dihydrochalcone contents.  相似文献   

13.
The present work was aimed at studying the potential of elicitation on the accumulation of phenolic compounds in in vitro shoot cultures of Eryngium alpinum L., a protected plant from the Apiaceae family. The study examined the influence of (+)-usnic acid on the biomass growth as well as on the biosynthesis of the desired flavonoids and phenolic acids in the cultured microshoots. The phenolic compound content was determined by HPLC-DAD. The flavonoid of the highest concentration was isoquercetin, and the phenolic acids of the highest amount were rosmarinic acid, caffeic acid and 3,4-dihydroxyphenylacetic acid, both in the non-elicited and elicited biomass. Isoquercetin accumulation was efficiently increased by a longer elicitation with a lower concentration of lichenic compound (107.17 ± 4.67 mg/100 g DW) or a shorter elicitation with a higher concentration of acid (127.54 ± 11.34 and 108.37 ± 12.1 mg/100 g DW). Rosmarinic acid production generally remained high in all elicited and non-elicited microshoots. The highest content of this acid was recorded at 24 h of elicitation with 3.125 µM usnic acid (512.69 ± 4.89 mg/100 g DW). The process of elicitation with (+)-usnic acid, a well-known lichenic compound with allelopathic nature, may therefore be an effective technique of enhancing phenolic compound accumulation in alpine eryngo microshoot biomass.  相似文献   

14.
Lupin seeds can represent a valuable source of phenolics and other antioxidant compounds. In this work, a comprehensive analysis of the phytochemical profile was performed on seeds from three Lupinus species, including one cultivar (Lupinus albus) and two wild accessions (Lupinus cossentinii and Lupinus luteus), collected from the northern region of Tunisia. Untargeted metabolomic profiling allowed to identify 249 compounds, with a great abundance of phenolics and alkaloids. In this regard, the species L. cossentinii showed the highest phenolic content, being 6.54 mg/g DW, followed by L. luteus (1.60 mg/g DW) and L. albus (1.14 mg/g DW). The in vitro antioxidant capacity measured by the ABTS assay on seed extracts ranged from 4.67 to 17.58 mg trolox equivalents (TE)/g, recording the highest values for L. albus and the lowest for L. luteus. The DPPH radical scavenging activity ranged from 0.39 to 3.50 mg TE/g. FRAP values varied between 4.11 and 5.75 mg TE/g. CUPRAC values for lupin seeds ranged from 7.20 to 8.95 mg TE/g, recording the highest for L. cossentinii. The results of phosphomolybdenum assay and metal chelation showed similarity between the three species of Lupinus. The acetylcholinesterase (AChE) inhibition activity was detected in each methanolic extract analyzed with similar results. Regarding the butyrylcholinesterase (BChE) enzyme, it was weakly inhibited by the Lupinus extracts; in particular, the highest activity values were recorded for L. albus (1.74 mg GALAE/g). Overall, our results showed that L. cossentinii was the most abundant source of polyphenols, consisting mainly in tyrosol equivalents (5.82 mg/g DW). Finally, significant correlations were outlined between the phenolic compounds and the in vitro biological activity measured, particularly when considering flavones, phenolic acids and lower-molecular-weight phenolics.  相似文献   

15.
In an extensive search for bioactive compounds from plant sources, the quantitative and qualitative characterisation of the compounds present in Cynoglossum cheirifolium extracts was studied. Total phenolic and flavonoid contents were determined by spectrophotometric techniques. In vitro antioxidant and radical scavenging profiling was determined through DPPH? scavenging activity and Ferric reducing antioxidant power (FRAP). Our study showed that leaves produce more phenolic compounds, followed by flowering aerial part. The butanolic fraction obtained from leaves extract exhibited the highest total phenolics (78.65 ± 3.58 mg GAE/g DW) and flavonoids (22.15 ± 4.66 mg CE/g DW). In contrast, this fraction displayed the highest DPPH? scavenging ability with IC50 values of 0.06 ± 0.003 mg/mL. The RP-HPLC-PDA analysis of phenolic compounds from leaves of C. cheirifolium lets to identify: rosmarinic acid, ferulic acid, caffeic acid, p-coumaric acid, syringic acid, sinapic acid and rutin. The obtained results indicate that this plant represent a valuable source of natural antioxidants.  相似文献   

16.
Mint species (Lamiaceae family) have been used as traditional remedies for the treatment of several diseases. In this work, we aimed to characterize the biological activities of the total phenolic and flavonoid contents of Mentha pulegium L. extracts collected from two different regions of Tunisia. The highest amounts of total phenols (74.45 ± 0.01 mg GAE/g DW), flavonoids (28.87 ± 0.02 mg RE/g DW), and condensed tannins (4.35 ± 0.02 mg CE/g DW) were found in the Bizerte locality. Methanolic leaf extracts were subjected to HPLC-UV analysis in order to identify and quantify the phenolic composition. This technique allowed us to identify seven phenolic compounds: two phenolic acids and five flavonoid compounds, such as eriocitrin, hesperidin, narirutin, luteolin, and isorhoifolin, which were found in both extracts with significant differences between samples collected from the different regions (p < 0.05). Furthermore, our results showed that the methanolic extract from leaves collected from Bizerte had the highest antioxidant activities (DPPH IC50 value of 16.31 μg/mL and 570.08 μmol Fe2+/g, respectively). Both extracts showed high radical-scavenging activity as well as significant antimicrobial activity against eight tested bacteria. The highest antimicrobial activities were observed against Gram-positive bacteria with inhibition zone diameters and MIC values ranging between 19 and 32 mm and 40 and 160 µg/mL, respectively. Interestingly, at 10 μg/mL, the extract had a significant effect on cell proliferation of U87 human glioblastoma cells. These findings open perspectives for the use of Mentha pulegium L. extract in green pharmacy, alternative/complementary medicine, and natural preventive therapies for the development of effective antioxidant, antibacterial, and/or antitumoral drugs.  相似文献   

17.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that cyclooxygenase-1 (COX-1) plays an important role in inflammation and carcinogenesis. In order to find more selective COX-1 inhibitors a series of novel curcumin derivatives was synthesized and evaluated for their ability to inhibit this enzyme using in vitro inhibition assays for COX-1 and COX-2 by measuring PGE(2) production. All curcumin analogues showed a higher rate of COX-1 inhibition. The most potent curcumin compounds were (1E,6E)-1,7-di-(2,3,4-trimethoxyphenyl)-1,6-heptadien-3,5-dione (4) (COX-1: IC(50) = 0.06 microM, COX-2: IC(50) > 100 microM, selectivity index>1666) and (1E,6E)-methyl 4-[7-(4-methoxycarbonyl)phenyl]-3,5-dioxo-1,6-heptadienyl]benzoate (6) (COX-1: IC(50) = 0.05 microM, COX-2: IC(50) > 100 microM, selectivity index > 2000). Curcumin analogues therefore represent a novel class of highly selective COX-1 inhibitors and promising candidates for in vivo studies.  相似文献   

18.
Plant biochemistry studies have increased in recent years due to their potential to improve human health. Argylia radiata is an extremophile plant with an interesting polyphenolic profile. However, its biomass is scarce and occasionally available. Argylia in vitro biomass was obtained from tissue culture and compared with in vivo roots regarding its polyphenolic and flavonoid content. Different solvents were used to prepare extracts from the in vitro tissue of callus and aerial plant organs and in vivo roots. UPLC-MS/MS was used to assess the chemical composition of each extract. ORAC-FL and scavenging of free radicals (DPPH and OH) methods were used to determine the antioxidant capacity of extracts. Furthermore, the biological activity of the extracts was established using the cellular antioxidant activity method. The vitroplants were a good source of polyphenols (25–68 mg GAE/100 g tissue FW), and methanol was the most efficient solvent. Eight polyphenolic compounds were identified, and their antioxidant properties were investigated by different chemical methods with EPR demonstrating its specific scavenging activity against free radicals. All extracts showed cellular dose-dependent antioxidant activity. The methanolic extract of vitroplants showed the highest cellular antioxidant activity (44.6% and 51%) at 1 and 10 µg/mL of extract, respectively. Vitroplants of A. radiata are proposed as a biotechnological product as a source of antioxidant compounds with multiple applications.  相似文献   

19.
Extracts from leaves and stems of Chenopodium hybridum were characterised for the presence and quantity of flavonoids and phenolic acids by LC-ESI-MS/MS. Five flavonoids and eight phenolic acids were detected for the first time in aerial parts of this plant species, the most abundant compounds being rutin (2.80 μg/g DW), 3-kaempferol rutinoside (2.91 μg/g DW), 4-OH-benzoic (1.86 μg/g DW) and syringic acids (2.31 μg/g DW). Extracts were tested for anti-inflammatory/antiarthritic, antihyaluronidase and cytotoxic activities against human prostate cancer (Du145, PC3) and melanoma cell lines (A375, HTB140 and WM793) of different malignancy. None of the extracts protected bovine serum albumin from heat-induced denaturation. Antihyaluronidase effect at the tested concentration was higher than standard naringenin. Cytotoxic activity was generally low with an exception of the extract from the leaves, which was found most effective against prostate Du145 cell line with 98.28 ± 1.13% of dead cells at 100 μg/mL.  相似文献   

20.
Abelmoschus esculentus (Okra) is an important vegetable crop, widely cultivated around the world due to its high nutritional significance along with several health benefits. Different parts of okra including its mucilage have been currently studied for its role in various therapeutic applications. Therefore, we aimed to develop and characterize the okra mucilage biopolymer (OMB) for its physicochemical properties as well as to evaluate its in vitro antidiabetic activity. The characterization of OMB using Fourier-transform infrared spectroscopy (FT-IR) revealed that okra mucilage containing polysaccharides lies in the bandwidth of 3279 and 1030 cm−1, which constitutes the fingerprint region of the spectrum. In addition, physicochemical parameters such as percentage yield, percentage solubility, and swelling index were found to be 2.66%, 96.9%, and 5, respectively. A mineral analysis of newly developed biopolymers showed a substantial amount of calcium (412 mg/100 g), potassium (418 mg/100 g), phosphorus (60 mg/100 g), iron (47 mg/100 g), zinc (16 mg/100 g), and sodium (9 mg/100 g). The significant antidiabetic potential of OMB was demonstrated using α-amylase and α-glucosidase enzyme inhibitory assay. Further investigations are required to explore the newly developed biopolymer for its toxicity, efficacy, and its possible utilization in food, nutraceutical, as well as pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号