首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Interactions of diaza-18-crown-6 and diaza-15-crown-5, as electron donors, with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), as an electron acceptor, have been investigated spectrophotometrically in acetonitrile and chloroform solutions. The results indicated immediate formation of an electron donor-electron acceptor complex DA: [reaction in text] which is followed by two relatively slow consecutive reactions: [reaction in text]. The pseudo-first-order rate constants for the formation of the ionic intermediate and the final product have been evaluated at various temperatures by computer fitting of the absorbance time data to appropriate equations. The formation constants of the resulting DA complexes have also been determined. The influences of both the azacrown's structure and the solvent properties on the formation of DA complexes and the rates of subsequent reactions are discussed.  相似文献   

2.
The complexation reactions between the protonated salts of aniline, o-hydroxy aniline, o-amino aniline and 2,3-benzo aniline (-naphthylamine) and macrocyclic ligands 18-crown-6,1,10-diaza-18-crown-6 and cryptand C222 have been studied conductometrically in acetonitrile, dimethylformamide and their 1 : 1 (mol–mol) mixture at 25 °C. Formation constants of the resulting 1 : 1 complexes were determined from the computer fitting of the molar conductance-mole ratio data. In all cases studied, the stability of the complexes decreases in the order C222 > 1,10-diaza-18-crown-6 > 18-crown-6. There is also an inverse relationship between the stabilities of the complexes and the Gutmann donor number of the solvents. It was found that, in the aromatic anilinium series used, increasing the bulkiness of the organic substituent in the ortho position results in a loss of complex stability.  相似文献   

3.
The reactions of [YCl2(H2O)6]Cl with 18-crown-6 in aliphatic alcohol solutions afford the complexes [Y(H2O)3(18-crown-6)]Cl3·1.25H2O (1) and [Y(H2O)8]Cl3·(18-crown-6)·4H2O (2), in which the inner coordination sphere of yttrium consists of nine and eight oxygen atoms, respectively. The inner-sphere transformations of complexes 1 and 2 under conditions of solid-state thermolysis were investigated. After the removal of coordinated water molecules from compound 1, the complex undergoes a structural transformation at temperatures above 180 °C, resulting in that two chloride anions enter into the coordination sphere of yttrium. For compound 2, a double exothermic effect is observed in the temperature range of 160–300 °C due to the formation of a certain new structural species containing chloride ions and 18-crown-6 in the inner coordination sphere.  相似文献   

4.
A conductance study of the interactionbetween Tl+ ion and 18-crown-6 (18C6),dicyclohexano-18-crown-6 (DC18C6), benzo-18-crown-6(B18C6), diaza-18-crown-6 (DA18C6),dibenzyldiaza-18-crown-6 (DBzDA18C6) andhexaaza-18-crown-6 (HA18C6) indimethylformamide-acetonitrile mixtures was carriedout at various temperatures. The formation constantsof the resulting 1 : 1 complexes were determined fromthe molar conductance-mole ratio data and found tovary in the order HA18C6 > DA18C6 > DBzDA18C6 >18C6 > DC18C6 > B18C6. The enthalpy and entropy ofthe complexation reactions were determined from thetemperature dependence of the formation constants.  相似文献   

5.
Interactions of hexaaza-18-crown-6 (HA18C6) and tetraaza-14-crown-4 (TA14C4) with iodine have been investigated spectrophotometrically in chloroform solution. The observed time dependence of the charge-transfer band and subsequent formation of I3 - in solution were related to the slow transformation of the initially formed 1:1 macrocycle. I2 outer complex to an inner electron donor-acceptor (EDA) complex, followed by fast reaction of the inner complex with iodine to form a triiodide ion, as follows: macrocycle + I2fast K f macrocycle.I2 (outer complex) macrocycle.I2 (outer complex) →slow (macrocycle.I+)I- (inner complex) macrocycle.I+)I- (inner complex) + I2slow (macrocycle.I+)I3 -. The pseudo-first-order rate constants at various temperatures for thetransformation process were evaluated from the absorbance-time data. The activation parameters (Ea, Δ H?, and Δ S?) for thetransformation were obtained from the temperature dependence of the rate constants. The stoichiometry and formation constants of the resulting EDA complexes have also been determined. It was found that the (TA14C4.I+)I3 - is more stable the (HA18C6.I+)I3 - complex in chloroform solution.  相似文献   

6.
The influence of composition of H2O-EtOH solvent on the reaction of formation of a molecular complex of 18-crown-6 ether (18C6) with triglycine (3Gly) has been studied at 298.15 K by a thermochemical method. The standard thermodynamic parameters (Δr G°, Δr H°, and TΔr S°) of the reaction of [3Gly18C6] complex formation in water-ethanol (H2O-EtOH) solvents having an EtOH mole fraction of 0.0, 0.1, 0.15, 0.2, 0.25, 0.30, and 0.50 have been calculated from the data of calorimetric measurements performed on a TAM III titration microcalorimeter. It has been found that an increase in EtOH concentration in the mixed solvent results in an increase in stability of [3Gly18C6] and in an enhancement in exothermicity of its formation reaction. The water-ethanol solvent has an analogous effect on the stability and energetics of the reactions of formation of molecular complexes of 18C6 with glycine, D,L-alanine, and L-phenylalanine.  相似文献   

7.
The complexation reaction of macrocyclic ligand, dibenzo-18-crown-6 (DB18C6) with UO2 2+ cation was studied in ethylacetate-1,2-dichloroethane (EtOAc/DCE), acetonitrile-1,2-dichloroethane (AN/DCE), methanol-1,2-dichloroethane (MeOH/DCE) and ethanol-1,2-dichloroethane (EtOH/DCE) binary solutions at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complex formed between DB18C6 and UO2 2+ cation is affected by the nature of the solvent systems. A non-linear behaviour was observed for changes of log K f of (DB18C6.UO2)+2 complex versus the composition of the binary mixed solvents. The values of thermodynamic quantities (?S°c, ?H°c) for formation of (DB18C6.UO2)+2 complex were obtained from temperature dependence of the stability constant using the van’t Hoff plots. The results show that in most cases, the complex is enthalpy stabilized and in all cases entropy stabilized and both parameters are affected by the nature and composition of the mixed solvents. In addition, the complex formation between dicyclohexyl-18-crown-6 (DCH18C6) and UO2 2+ cation was studied in pure AN and the results were compared with those of the (DB18C6.UO2)+2 complex.  相似文献   

8.
Standard thermodynamic parameters (Δr G○, Δr H○, TΔr S○) for the complexation reaction of 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-ethanol (H2O-EtOH) solvents are calculated from the data of calorimetric titrations performed at T = 298.15 K. It is established that an increase in the concentration of EtOH in mixed solvent leads to a rise in stability and an increase in the exothermicity of [Ala18C6] molecular complex formation; changes in the energetics of reaction upon a change in the solvent composition are determined by changes in the solvation state of 18C6, which is typical of the reactions of molecular complex formation of 18C6 with D,L-alanine and glycine in water-organic solvents.  相似文献   

9.
The complex formation of Ag+ with polyether 18-crown-6 (18C6) and their solvation have been studied using calorimetric and potentiometric methods in H2O-EtOH solvents in wide range of ethanol concentration. The standard enthalpies of dissolution AgNO3, AgClO4 and 18C6 in aqueous-ethanol solvents are obtained. The stability of a complex [Ag18C6]+ grows with increasing the EtOH content a solvent. Using the method based on the thermodynamic characteristics of solvation of metal-ion, ligand and complex-ion the interpretation of the results has been given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The interaction of 18-crown-6 (CE) with picric acid(PA) was studied in the UV-Visible region in 1,2-dichloroethane (DCE) at 298.2 K. The effect of the surfactant Triton X-100 was studied, and it was found to have a pronounced effect on the interaction of 18-crown-6 with picric acid. The effect of the alkali metal cations, especially Na and K on the complex matrix donor–acceptor surfactant was studied. It is found that the extraction of the insoluble solid NaCl and KCl to the organic phase increased by more than 8-fold in the presence of the complex. The interaction of the alkali metals ions, i.e., Li, Na, K, Cs and Rb with the systems Donor–Acceptor and Donor–Acceptor–Triton were studied. It is found that the stability of the complexes formed between the system CE + Triton + Picric acid and the alkali metals ions depends on the ratio between the crown ether radius and the alkali metal radius.  相似文献   

11.
Osmotic vapor pressure measurements have been carried out for three ternary systems, H2O + 0.2 m 18-crown-6 + LiCl, H2O + 0.2 m 18-crown-6 + NaCl and H2O + 0.2 m 18-crown-6 + KCl at 298.15 K using vapor pressure osmometry. Water activities for each ternary system were measured and used to calculate the activity coefficients of 18-crown-6 (18C6) and its salts following the methodology developed by Robinson and Stokes for isopiestic measurements. In the concentration range studied, it was found that (in NaCl and KCl solutions) there is considerable lowering of activity coefficients of one component in the presence of other solutes that has been attributed to the formation of the complexed 18C6:Na+ (or 18C6:K+) species in solution. The Gibbs energies of transfer of alkali chlorides from water to aqueous 18C6 solutions and that of 18C6 from water to aqueous electrolyte solutions have been calculated. These were further used to evaluate the pair and triplet interaction parameters. The calculation of thermodynamic equilibrium constants using the pair interaction parameter, g NE (i.e., the nonelectrolyte–electrolyte pair interaction) for the studied complexation of cations yields values which are in good agreement with those reported in literature obtained by using ion-selective potentiometry and calorimetry. The results are discussed in terms of water structural effects, complex formation, and hydrophobic interactions.  相似文献   

12.
The catalytic activity of the two-component catalytic system based on nickel bis(enaminoacetonate) (enamac) and 18-crown-6 (18C6) macrocyclic polyether is studied in ethylbenzene oxidation by molecular oxygen. The {Ni(enamac)2 + 18-crown-6} system is a more active catalyst of ethylbenzene oxidation into -phenylethyl hydroperoxide compared to Ni(enamac)2 and the {Ni(acac)2 + 18-crown-6} system. The formation of Ni(enamac)2–18-crown-6 complex is confirmed both kinetically and spectroscopically. It is suggested that a rise in the oxidation selectivity is due to Ni(enamac)2 transformation activated by 18-crown-6. The order of oxidation product formation at different oxidation stages is determined. The activity of catalysts in the elementary steps of the chain process is discussed.  相似文献   

13.
Standard thermodynamic parameters (logK o, ??r H o, T??r S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.  相似文献   

14.
In the present work the complexation process between UO2 2+ cation and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6) was studied in ethylacetate–dimethylformamide (EtOAc/DMF), ethylacetate–acetonitrile (EtOAc/AN), and ethylacetate–tetrahydrofuran (EtOAc/THF) and ethylacetate–propylencarbonate (EtOAc/PC) binary solutions at different temperatures using the conductometric method. The results show that the stoichiometry of the (DB18C6 . UO2)2+ complex in all binary mixed solvents is 1:1. A non-linear behavior was observed for changes of log Kf of this complex versus the composition of the binary mixed solvents. The stability constant of (DB18C6 . UO2)2+ complex in various neat solvents at 25 °C decreases in order: THF > EtOAc > PC > AN > DMF, and in the binary solvents at 25 °C is: THF–EtOAc > PC–EtOAc > DMF–EtOAc ≈ AN–EtOAc. The values of thermodynamic quantities (?H°c, ?S°c) for formation of this complex in the different binary solutions were obtained from temperature dependence of its stability constant and the results show that the thermodynamics of complexation reaction between UO2 2+ cation and DB18C6 is affected strongly by the nature and composition of the mixed solvents.  相似文献   

15.
The UV-Visible spectra of DB18C6 as a donor with TCNE (Tetracyanoethylene), and DDQ (2,3-dichloro-5,6-dicyano-1,4- benzoquinone) as acceptors were studied. Charge transfer spectra were obtained for these systems from which it was possible to calculate the formation constant, Kc. The effects of potassium halides were studied. This study shows that in the presence of the anion there is an electron transfer from the anion to the acceptor. This process is enhanced by the presence of the crown ether, CE. The formation of the anion salt with the acceptor, in the presence of the CE, follows the trend F = I > Br > Cl. It is also indicated in this study that the interaction between DB18C6 and the acceptor follow the trend DDQ > TCNE.  相似文献   

16.
The charge transfer complexes (CTC) of dibenzo-18-crown-6 (DB 1 8C6) andtetracyanoethylene (TCNE) were studied in the presence of the surfactant TritonX-100. It was found that the stability of the CTC increases with increasingconcentration of the donor, acceptor and the surfactant. This suggests that thecharge transfer complex is encapsulated in the micelle structure. Results of theeffect of time on the complex stability are also presented.  相似文献   

17.
About the Fluorescence Thermochromism of Acetonitrile Copper Iodide with Dibenzo-18-Crown-6 Copper iodide reacts in actonitrile solution with dibenzo-18-crown-6 to form a compound,(CuJ)4(CH3CN)4(db-18-c-6), which fluoresces yellow at 298K, but pink at 77 K. It decomposes at 55.3°C. (5 Torr) by lost of acetonitrile and a heterogeneous mixture of copper iodide and polyether results. In absence of dibenzo-18-crown-6, copper iodide forms with acetonitrile a heterogeneous mixture of copper iodide and polyether results. In absence of dibenzo-18-crown-6, copper iodide forms with acetonitrile a solvate CuJ. CH3CN. It also shows fluorescence thermochromism (yellow at 298 K, but green at 77 k) but decomposes at 0°C and 760 Torr. The luminescences pectra of the macrocyclic polyether complex at 298 K is redshifted. This probably results from intersection between the crown and the acetonitrile copper iodide.  相似文献   

18.
Abstract

Solvent extraction of lead halides with 18-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6, cis-syn-cis and cis-anti-cis isomers) in chloroform was studied, and the extraction constants corrected for side reactions and ionic strength effects were obtained. The compounds of the same composition as those being extracted were also isolated in crystal form. The molecular structure of the [Pb(18C6)I2] complex has been determined. Crystals are monoclinic, P21/n, a = 11.237(2), b = 10.992(2), c = 8.139(2)Å, β = 97.32(3)°, V = 997.1(7)Å3, Dcalc = 2.416(2)gcm?3, Z = 2 for the composition C12H24O6PbI2. The final R-factor is 0.043 for 558 unique reflections. The lead atom is coordinated to six oxygen atoms of the crown ether and two iodine atoms forming a hexagonal bipyramidal coordination polyhedron. The 18C6 molecule and the two halogen atoms form a hydrophobic coating for the lead atom which may be assumed to be the main reason of high extraction constants of the iodine complexes. For 10-coordinate lead ion (bidentate counter ions) the cis-syn-cis isomer of DC18C6 appears to be the best extraction reagent, while for 8-coordinate lead ion (monodentate halide anion) no difference between isomers was observed.  相似文献   

19.
The charge–transfer (CT) complex of donor antipyrine with Π‐acceptor 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) has been investigated spectrophotometrically in different halocarbon and acetonitrile solvents. The results indicated immediate formation of an electron donor–acceptor complex (DA), which is followed by two relatively slow consecutive reactions. The pseudo–first‐order rate constants for the formation of the ionic intermediate and the final product at various temperatures were evaluated from the absorbance–time data. The activation parameters, viz. activation energy, enthalpy, entropy, and free energy of activation, were computed from temperature dependence of rate constants. The stoichiometry of the complex was found to be 1:1 by Job's method of continuous variation. The formation constants of the resulting DA complexes were determined by the Benesi–Hildebrand equation at four different temperatures. The enthalpies and entropies of the complex formation reactions have been obtained by temperature dependence of the formation constants using Van't Hoff equation. The results indicate that DDQ complexes of antipyrine in all solvents are enthalpy stabilized but entropy destabilized. Both the kinetics of the interaction and the formation constants of the complexes are dependent upon the polarity of the solvents. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 81–91, 2013  相似文献   

20.
New mixed complex compound aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(tetrachlorocuprato(II)-Cl)potassium, [K(CuCl4)(Db18C6)]? · [K(Db18C6)(H2O)]+, is synthesized and its crystal structure is studied by the method of x-ray structural analysis. The structure includes two independent complex ions, both of guest-host type: two cations K+ are located in the respective cavities of the Db18C6 crown-ligand (one in each) and each is coordinated by all its six O atoms and one Cl atom of the anion-ligand [CuCl4]2? or O atom of the ligand water molecule. Coordination of these two K+ cations is completed to hexagonal pyramidal one by formation by each of unusually weak coordination bond K+π(\(C\dddot - C\)) with two C atoms of respective benzene ring in the neighboring Db18C6 ligand. In this crystal structure the complex anions and cations form dual infinite chains via these coordination bonds and interionic O-H?Cl hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号