首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Ruthenium- and copper-catalyzed propargylic substitution reactions of propargylic alcohol derivatives with N-monosubstituted hydrazones as ambident nucleophiles are achieved in which N-monosubstituted hydrazones exhibit impressive different reactivities depending on different catalytic systems, behaving as carbon-centered nucleophiles to give the corresponding propargylic alkylated products in ruthenium catalysis, or as nitrogen-centered nucleophiles to afford the corresponding propargylic aminated products in copper catalysis. DFT calculations were carried out to investigate the detailed reaction pathways of these two systems. Further transformation of propargylic substituted products affords the corresponding multisubstituted pyrazoles as cyclization products in good to high yields.  相似文献   

3.
4.
5.
6.
The enantioselectivity in the propargylic substitution reactions of propargylic alcohols with acetone catalyzed by optically active thiolate-bridged diruthenium complexes was examined via ωB97X-D level DFT calculations. Some structures with intramolecular dispersion interactions between ligands were found for the ruthenium-allenylidene complex, which is the key intermediate in the catalytic reaction, and it was determined that the structure corresponding to the X-ray crystal structure, which had provided the transition state model for the enantioselectivity in previous studies, was not the most stable among the obtained structures. Then, a variety of transition-state structures for the nucleophilic attack of prop-1-ene-2-ol, which is the enol isomer of acetone, on the γ-carbon of the ruthenium-allenylidene complex were explored. Among the transition-state structures with lower energies, the number of structures leading to the major (R) product was found to be larger than that of structures leading to the minor (S) product, providing enantioselectivity in terms of probability distributions. The introduction of a phenyl group in the thiolate ligand was suggested to increase the selectivity. Thus, we propose the novel transition state model for the asymmetric catalytic reaction system.  相似文献   

7.
8.
9.
Despite the significant progress of the enantioselective reaction using chiral catalysts, the enantioselective nucleophilic substitution reaction at the chiral sp3-hybridized carbon atom of a racemic electrophile has not been largely explored. Herein, we report the enantioconvergent propargylic substitution reaction of racemic propargylic alcohols with thiols using chiral bis-phosphoric acid as the chiral Brønsted acid catalyst. The substitution products were formed in high yields with high enantioselectivities in most cases. The cation-stabilizing effect of the sulfur functional group introduced at the alkynyl terminus is the key to achieving the efficient enantioconvergent process, in which chiral information originating from not only the racemic stereogenic center but also the formed contact ion pair is completely eliminated from the present system.  相似文献   

10.
炔烃的合成与转化一直是有机合成化学的一个重要研究内容. 其中, 炔丙位官能化是实现炔烃合成与转化的一个重要途径. 相对于经历阳离子中间体途径的炔丙位官能化反应, 自由基途径的炔丙位官能化反应在最近十年才得以发展, 且与前者也已形成互补之势. 该类炔丙基自由基既能够通过炔丙位的碳杂键断裂生成, 又可通过自由基对1,3-烯炔的加成生成. 同时, 由于炔丙基自由基存在自由基与炔烃的共轭结构, 使得该自由基既能够直接对金属物种加成参与炔丙位的官能化反应, 又能够异构成联烯自由基后对金属物种加成, 继而参与联烯化合物的合成. 此外, 炔丙基自由基还可以被进一步氧化成炔丙基阳离子后参与后续的有机转化. 本综述根据炔丙基自由基所参与的反应类型, 对近年来炔丙位自由基参与的有机反应进行了简要总结.  相似文献   

11.
The diastereo‐ and enantioselective propargylic alkylation of propargylic alcohols with E‐enecarbamates in the presence of a catalytic amount of thiolate‐bridged diruthenium complexes bearing an optically active phosphoramide moiety gives the corresponding propargylic alkylated products (up to 97 % ee).  相似文献   

12.
13.
The silyl- and germylzincation of terminal or internal propargylic alcohols by reaction with (Me3Si)3SiH/Et2Zn, [(Me3Si)3Si]2Zn/Et2Zn or Ph3GeH/Et2Zn is examined. These reactions proceed through the addition of silicon- or germanium-centered radicals across the carbon≡carbon triple bond followed by the trapping by diethylzinc of the produced vinyl radical through homolytic substitution at the zinc atom. The influence of the hydroxy unit on the regio- and stereoselectivity of these reactions is discussed and compared to its role played in radical hydrosilylation and hydrogermylation reactions. Protocols developed to achieve the β-regioselective silylzincation of propargyl alcohol and the α-regioselective germylzincation of internal propargylic alcohols are particularly important, as they occur with trans stereoselectivity. For both procedures the C(sp2)−Zn bond remains available for subsequent in-situ electrophilic substitution leading overall to net alkyne trans difunctionalization.  相似文献   

14.
15.
A calcium‐catalyzed direct reduction of propargylic alcohols and ethers has been accomplished by using triethylsilane as a nucleophilic hydride source. At room temperature a variety of secondary propargylic alcohols was deoxygenated to the corresponding hydrocarbons in excellent yields. Furthermore, for the first time, a catalytic deoxygenation of tertiary propargylic alcohols was generally applicable. The same protocol was suitable for an efficient reduction of secondary as well as tertiary propargylic methyl, benzyl and allyl ethers. Substrates containing an additional keto‐, ester or secondary hydroxyl function were reduced with exceptional chemoselectivity at the propargylic position.  相似文献   

16.
A study of alkali metal amide-mediated isomerizations of terminal allenes is described. The isomerizations of substituted ethenylidenecyclohexanes to form diastereomeric mixtures of terminal alkynes have been conducted to determine factors which may influence the stereochemistry at the newly formed propargylic centers. An initial base screen revealed that potassium N-methylbutylamide (KMBA) exhibits the highest level of equatorial to axial alkyne diastereoselectivity. With the severely hindered terminal allene 26, the use of potassium 3-aminopropylamide is required to effect isomerization. A general synthesis of deuterated terminal allenes has also been achieved, and a mechanistic study using d(2)-allenes 18a,b has revealed the involvement of a propargylic anion in the course of the KMBA-mediated isomerizations.  相似文献   

17.
18.
19.
[Pd(PPh3)4] catalyzes a Suzuki–Miyaura‐like twofold cross‐coupling sequence between underivatized propargylic diols and either aryl or alkenyl boronic acids to furnish highly substituted 1,3‐dienes. Thus, 2,3‐diaryl‐1,3‐butadienes and their dialkenic congeners ([4]dendralenes) are delivered in a (pseudo)halogen‐free, single‐step synthesis which supersedes existing methods. Allenols are also readily formed. Treatment of these single‐ and twofold cross‐coupled products with acid leads to remarkably short syntheses of highly‐substituted benzofulvenes and aryl indenes, respectively.  相似文献   

20.
Abstract

The synthesis and rearrangement of the title compounds to sulfones are discussed. A facile isomerization of the allylic trichloromethyl sulfones to the corresponding vinyl sulfones is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号