首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometric and electronic structure of the untethered heme-peroxo-copper model complex [(F(8)TPP)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](ClO(4)) (1) has been investigated using Cu and Fe K-edge EXAFS spectroscopy and density functional theory calculations in order to describe its geometric and electronic structure. The Fe and Cu K-edge EXAFS data were fit with a Cu...Fe distance of approximately 3.72 A. Spin-unrestricted DFT calculations for the S(T) = 2 spin state were performed on [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) as a model of 1. The peroxo unit is bound end-on to the copper, and side-on to the high-spin iron, for an overall mu-eta(1):eta(2) coordination mode. The calculated Cu...Fe distance is approximately 0.3 A longer than that observed experimentally. Reoptimization of [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) with a 3.7 A Cu...Fe constrained distance results in a similar energy and structure that retains the overall mu-eta(1):eta(2)-peroxo coordination mode. The primary bonding interaction between the copper and the peroxide involves electron donation into the half-occupied Cu d(z)2 orbital from the peroxide pi(sigma) orbital. In the case of the Fe(III)-peroxide eta(2) bond, the two major components arise from the donor interactions of the peroxide pi*(sigma) and pi*(v) orbitals with the Fe d(xz) and d(xy) orbitals, which give rise to sigma and delta bonds, respectively. The pi*(sigma) interaction with both the half-occupied d(z)2 orbital on the copper (eta(1)) and the d(xz) orbital on the iron (eta(2)), provides an effective superexchange pathway for strong antiferromagnetic coupling between the metal centers.  相似文献   

2.
3.
1H NMR, (13)C NMR, and EPR spectra of six-coordinate ferric porphyrin complexes [Fe(Por)L2]ClO4 with different porphyrin structures are presented, where porphyrins (Por) are planar 5,10,15,20-tetraphenylporphyrin (TPP), ruffled 5,10,15,20-tetraisopropylporphyrin (TiPrP), and saddled 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin (OETPP), and axial ligands (L) are weak oxygen ligands such as pyridine-N-oxide, substituted pyridine-N-oxide, DMSO, DMF, MeOH, THF, 2-MeTHF, and dioxane. These complexes exhibit the spin states ranging from an essentially pure high-spin (S = 5/2) to an essentially pure intermediate-spin (S = 3/2) state depending on the field strength of the axial ligands and the structure of the porphyrin rings. Reed and Guiset reported that the pyrrole-H chemical shift is a good probe to determine the spin state in the spin admixed S = 5/2,3/2 complexes (Reed, C. A.; Guiset, F. J. Am. Chem. Soc. 1996, 118, 3281-3282). In this paper, we report that the chemical shifts of the alpha- and beta-pyrrole carbons can also be good probes to determine the spin state because they have shown good correlation with those of the pyrrole-H or pyrrole-C(alpha). By putting the observed or assumed pyrrole-H or pyrrole-C(alpha) chemical shifts of the pure high-spin and pure intermediate-spin complexes into the correlation equations, we have estimated the carbon chemical shits of the corresponding complexes. The orbital interactions between iron(III) and porphyrin have been examined on the basis of these chemical shifts, from which we have found that both the d(xy)-a(2u) interaction in the ruffled Fe(T(i)PrP)L2+ and d(xy)-a(1u) interaction in the saddled Fe(OETPP)L2+ are quite weak in the high-spin and probably in the intermediate-spin complexes as well. Close inspection of the correlation lines has suggested that the electron configuration of an essentially pure intermediate-spin Fe(T(i)PrP)L2+ changes from (d(xy), d(yz))3(d(xy))1(d(z)2)1 to (d(xy))2(d(xz), d(yz))2(d(z)2)1 as the axial ligand (L) changes from DMF to MeOH, THF, 2-MeTHF, and then to dioxane. Although the DFT calculation has indicated that the highly saddled intermediate-spin Fe(OETPP)(THF)2+ should adopt (d(xy), d(yz))3(d(xy))1(d(z)2)1 rather than (d(xy))2(d(xz), d(yz))2(d(z)2)1 because of the strong d(xy)-a(1u) interaction (Cheng, R.-J.; Wang, Y.-K.; Chen, P.-Y.; Han, Y.-P.; Chang, C.-C. Chem. Commun. 2005, 1312-1314), our 13C NMR study again suggests that Fe(OETPP)(THF)2+ should be represented as (d(xy))2(d(xz), d(yz))2(d(z)2)1 because of the weak d(xy)-a(1u) interaction. The contribution of the S = 3/2 state in all types of the spin admixed S = 5/2,3/2 six-coordinate complexes has been determined on the basis of the (13)C NMR chemical shifts.  相似文献   

4.
We report evidence for the formation of long-lived photoproducts following excitation of iron(III) tetraphenylporphyrin chloride (Fe((III))TPPCl) in a 1:1 glass of toluene and CH(2)Cl(2) at 77 K. The formation of these photoproducts is dependent on solvent environment and temperature, appearing only in the presence of toluene. No long-lived product is observed in neat CH(2)Cl(2) solvent. A 2-photon absorption model is proposed to account for the power-dependent photoproduct populations. The products are formed in a mixture of spin states of the central iron(III) metal atom. Metastable six-coordinate high-spin and low-spin complexes and a five-coordinate high-spin complex of iron(III) tetraphenylporphyrin are assigned using structure-sensitive vibrations in the resonance Raman spectrum. These species appear in conjunction with resonantly enhanced toluene solvent vibrations, indicating that the Fe((III)) compound formed following photoexcitation recruits a toluene ligand from the surrounding environment. Low-temperature transient absorption (TA) measurements are used to explain the dependence of product formation on excitation frequency in this photochemical model. The six-coordinate photoproduct is initially formed in the high-spin Fe((III)) state, but population relaxes into both high-spin and low-spin state at 77 K. This is the first demonstration of coupling between the optical and magnetic properties of an iron-centered porphyrin molecule.  相似文献   

5.
Starting from their six-coordinate iron(II) precursor complexes [L8RFe(MeCN)]2+, a series of iron(III) complexes of the known macrocyclic tetracarbene ligand L8H and its new octamethylated derivative L8Me, both providing four imidazol-2-yliden donors, were synthesized. Several five- and six-coordinate iron(III) complexes with different axial ligands (Cl, OTf, MeCN) were structurally characterized by X-ray diffraction and analyzed in detail with respect to their spin state variations, using a bouquet of spectroscopic methods (NMR, UV/Vis, EPR, and 57Fe Mößbauer). Depending on the axial ligands, either low-spin (S=1/2) or intermediate-spin (S=3/2) states were observed, whereas high-spin (S=5/2) states were inaccessible because of the extremely strong in-plane σ-donor character of the macrocyclic tetracarbene ligands. These findings are reminiscent of the spin state patterns of topologically related ferric porphyrin complexes. The ring conformations and dynamics of the macrocyclic tetracarbene ligands in their iron(II), iron(III) and μ-oxo diiron(III) complexes were also studied.  相似文献   

6.
A rare family of five and six-coordinated high-spin Fe(III) porphyrins incorporating weak axial ligands are synthesized and structurally characterized which demonstrate, for the first time, stepwise metal displacements in a single distorted macrocyclic environment that has generally been seen in many biological systems. The introduction of four nitro groups into the meso-positions of octaethyl porphyrin severely distorts the porphyrin geometry and provides an interesting modulation of the macrocycle properties which enables the facile isolation of "pure" high-spin Fe(III)(tn-OEP)Cl, Fe(III)(tn-OEP)(MeOH)Cl, and Fe(III)(tn-OEP)(H2O)2(+) in excellent yields in a saddle distorted macrocyclic environment that are known to stabilize intermediate spin states. The stepwise out-of-plane displacements of iron are as follows: 0.47 A for Fe(III)(tn-OEP)Cl; 0.09 A for Fe(III)(tn-OEP)(MeOH)Cl, and 0.01 A for Fe(III)(tn-OEP)(H2O)2(+) from the mean plane of the porphyrins. However, in both five and six-coordinated Fe(III) porphyrins, the Fe-Np distances are quite comparable while the porphyrin cores have expanded significantly, virtually to the same extent for the six-coordinate complexes reported here. The large size of the high-spin iron(III) atom in Fe(III)(tn-OEP)(H2O)2(+) is accommodated perfectly with no displacement of the metal. This expansion is accompanied by a significant decrease of the saddle distortion with a clear increase of the ruffling. Furthermore, the Fe atom in Fe(III)(tn-OEP)(MeOH)Cl is not out of plane because of the larger atom size; however, the displacement of the iron depends on both the relative strength of the axial ligands, as well as the nature and extent of the ring deformation. Our characterization demonstrates that increase in ruffling and/or decrease in macrocycle deformation brings the iron atom more into the plane in a distorted macrocyclic environment. Our observations thus suggest that the displacements of iron in proteins are the consequences of nonequivalent axial coordination, as well as protein induced deformations at the heme. The high-spin nature of the complexes reported here is believed to be due to the larger Fe-Np distances which then reduce substantially the interaction between iron d(x2)-y2 and porphyrin a(2u) orbital. The Fe(III)/Fe(II) reduction potential of Fe(III)(tn-OEP)Cl shows a reversible peak at large positive value (0.20 V), and no ring-centered oxidation was observed within the solvent limit (approximately 1.80 V). It is thus easier to reduce Fe(III)(tn-OEP)Cl by almost 700 mV compared to Fe(III)(OEP)Cl while oxidations are very difficult. Furthermore, the addition of 3-Cl-pyridine to Fe(III)(tn-OEP)Cl in air undergoes spontaneous auto reduction to produce the rare air-stable Fe(II)(tn-OEP)(3-Cl-py)2 that shows Fe(II)/Fe(III) oxidation peaks at high positive potential (0.79 V), which is approximately 600 mV more anodic compared to [Fe(II)(tn-OEP)Cl](-). This large anodic shift illustrates the effective removal of metal-centered electron density by the macrocycle when the metal is constrained to reside in the porphyrin plane.  相似文献   

7.
Using magnetic circular dichroism (MCD) spectroscopy together with DFT calculations, the spin density distributions in five-coordinate [Fe(TPP)(NO)] (I) and six-coordinate [Fe(TPP)(MI)(NO)] (II, MI = 1-methylimidazole) are defined. In the five-coordinate complex, a strong Fe-NO sigma bond between pi(*)(h) and d(z)(2) is present that leads to a large transfer of spin density from the NO ligand to Fe(II) corresponding to an electronic structure with noticeable Fe(I)-NO(+) character. Consequently, the MCD spectrum is dominated by paramagnetic C-term contributions. On coordination of the sixth ligand, the spin density is pushed back from the iron toward the NO ligand, resulting in an Fe(II)-NO(radical) type of electronic structure. This is reflected by the fact that the MCD spectrum is dominated by diamagnetic contributions.  相似文献   

8.
In this paper, the differences in the spectroscopic properties and electronic structures of five- and six-coordinate iron(II) porphyrin NO complexes are explored using [Fe(TPP)(NO)] (1; TPP = tetraphenylporphyrin) and [Fe(TPP)(MI)(NO)] (2; MI = 1-methylimidazole) type systems. Binding of N-donor ligands in axial position trans to NO to five-coordinate complexes of type 1 is investigated using UV-vis absorption and 1H NMR spectroscopies. This way, the corresponding binding constants Keq are determined and the 1H NMR spectra of 1 and 2 are assigned for the first time. In addition, 1H NMR allows for the determination of the degree of denitrosylation in solutions of 1 with excess base. The influence of the axial ligand on the properties of the coordinated NO is then investigated. Vibrational spectra (IR and Raman) of 1 and 2 are presented and assigned using isotope substitution and normal-coordinate analysis. Obtained force constants are 12.53 (N-O) and 2.98 mdyn/A (Fe-NO) for 1 compared to 11.55 (N-O) and 2.55 mdyn/A (Fe-NO) for 2. Together with the NMR results, this provides experimental evidence that binding of the trans ligand weakens the Fe-NO bond. The principal bonding schemes of 1 and 2 are very similar. In both cases, the Fe-N-O subunit is strongly bent. Donation from the singly occupied pi* orbital of NO into d(z2) of iron(II) leads to the formation of an Fe-NO sigma bond. In addition, a medium-strong pi back-bond is present in these complexes. The most important difference in the electronic structures of 1 and 2 occurs for the Fe-NO sigma bond, which is distinctively stronger for 1 in agreement with the experimental force constants. The increased sigma donation from NO in 1 also leads to a significant transfer of spin density from NO to iron, as has been shown by magnetic circular dichroism (MCD) spectroscopy in a preceding Communication (Praneeth, V. K. K.; Neese, F.; Lehnert, N. Inorg. Chem. 2005, 44, 2570-2572). This is confirmed by the 1H NMR results presented here. Hence, further experimental and computational evidence is provided that complex 1 has noticeable Fe(I)NO+ character relative to 2, which is an Fe(II)NO(radical) complex. Finally, using MCD theory and quantum chemical calculations, the absorption and MCD C-term spectra of 1 and 2 are assigned for the first time.  相似文献   

9.
The spin states of the iron(III) complexes with a highly ruffled porphyrin ring, [Fe(TEtPrP)X] where X = F-, Cl-, Br-, I-, and ClO4(-), have been examined by 1H NMR, 13C NMR, EPR, and M?ssbauer spectroscopy. While the F-, Cl-, and Br- complexes adopt a high-spin (S = 5/2) state, the I- complex exhibits an admixed intermediate-spin (S = 5/2, 3/2) state in CD2Cl2 solution. The I- complex shows, however, a quite pure high-spin state in toluene solution as well as in the solid. The results contrast those of highly saddled [Fe(OETPP)X] where the I- complex exhibits an essentially pure intermediate-spin state both in solution and in the solid. In contrast to the halide-ligated complexes, the ClO4(-) complex shows a quite pure intermediate-spin state. The 13C NMR spectra of [Fe(TEtPrP)ClO4] are characterized by the downfield and upfield shifts of the meso and pyrrole-alpha carbon signals, respectively: delta(meso) = +342 and delta(alpha-py) = -287 ppm at 298 K. The data indicate that the meso carbon atoms of [Fe(TEtPrP)ClO4] have considerable amounts of positive spin, which in turn indicate that the iron has an unpaired electron in the d(xy) orbital; the unpaired electron in the d(xy) orbital is delocalized to the meso positions due to the iron(d(xy))-porphyrin(a(2u)) interaction. Similar results have been obtained in analogous [Fe(TiPrP)X] though the intermediate-spin character of [Fe(TiPrP)X] is much larger than that of the corresponding [Fe(TEtPrP)X]. On the basis of these results, we have concluded that the highly ruffled intermediate-spin complexes such as [Fe(TEtPrP)ClO4] and [Fe(TiPrP)ClO4] adopt a novel (d(xz), d(yz))3(d(xy))1(d(z)(2)1 electron configuration; the electron configuration of the intermediate-spin complexes reported previously is believed to be (d(xy))2(d(xz)), d(yz))2(d(z)(2))1.  相似文献   

10.
11.
In-depth kinetic and mechanistic studies on the reversible binding of NO to water-soluble iron(III) porphyrins as a function of pH revealed unexpected reaction kinetics for monohydroxo-ligated (P)Fe(III)(OH) species formed by deprotonation of coordinated water in diaqua-ligated (P)Fe(III)(H(2)O)(2). The observed significant decrease in the rate of NO binding to (P)Fe(OH) as compared to that of (P)Fe(H(2)O)(2) does not conform with expectations based on previous mechanistic work on NO-heme interactions, which would point to a diffusion-limited reaction for the five-coordinate Fe(III) center in (P)Fe(OH). The decrease in rate and an associatively activated mode of NO binding observed at high pH is ascribed to an increase in the activation barrier related to spin state and structural changes accompanying NO coordination to the high-spin (P)Fe(III)(OH) complex. The existence of such a barrier has previously been observed in the reactions of five-coordinate iron(II) hemes with CO and is evidenced for the first time for the process involving coordination of NO to the iron heme complex. The observed reactivity pattern, relevant in the context of studies on NO interactions with synthetic and biologically important hemes (in particular, hemoproteins), is reported here for an example of a simple water-soluble iron(III) porphyrin [meso-tetrakis(sulfonatomesityl)porphinato]-iron(III), (TMPS)Fe(III).  相似文献   

12.
Substituent effects of the meso-aryl (Ar) groups on the 1H and 13C NMR chemical shifts in a series of low-spin highly saddled iron(III) octaethyltetraarylporphyrinates, [Fe(OETArP)L2]+, where axial ligands (L) are imidazole (HIm) and tert-butylisocyanide ((t)BuNC), have been examined to reveal the nature of the interactions between metal and porphyrin orbitals. As for the bis(HIm) complexes, the crystal and molecular structures have been determined by X-ray crystallography. These complexes have shown a nearly pure saddled structure in the crystal, which is further confirmed by the normal-coordinate structural decomposition method. The substituent effects on the CH2 proton as well as meso and CH2 carbon shifts are fairly small in the bis(HIm) complexes. Since these complexes adopt the (d(xy))2(d(xz), d(yz))3 ground state as revealed by the electron paramagnetic resonance (EPR) spectra, the unpaired electron in one of the metal dpi orbitals is delocalized to the porphyrin ring by the interactions with the porphyrin 3e(g)-like orbitals. A fairly small substituent effect is understandable because the 3e(g)-like orbitals have zero coefficients at the meso-carbon atoms. In contrast, a sizable substituent effect is observed when the axial HIm is replaced by (t)BuNC. The Hammett plots exhibit a large negative slope, -220 ppm, for the meso-carbon signals as compared with the corresponding value, +5.4 ppm, in the bis(HIm) complexes. Since the bis((t)BuNC) complexes adopt the (d(xz), d(yz))4(d(xy))1 ground state as revealed by the EPR spectra, the result strongly indicates that the half-filled dxy orbital interacts with the specific porphyrin orbitals that have large coefficients on the meso-carbon atoms. Thus, we have concluded that the major metal-porphyrin orbital interaction in low-spin saddle-shaped complexes with the (d(xz), d(yz))4(d(xy))1 ground state should take place between the d(xy) and a(2u)-like orbital rather than between the dxy and a(1u)-like orbital, though the latter interaction is symmetry-allowed in saddled D(2d) complexes. Fairly weak spin delocalization to the meso-carbon atoms in the complexes with electron-withdrawing groups is then ascribed to the decrease in spin population in the d(xy) orbital due to a smaller energy gap between the d(xy) and dpi orbitals. In fact, the energy levels of the d(xy) and dpi orbitals are completely reversed in the complex carrying a strongly electron-withdrawing substituent, the 3,5-bis(trifluoromethyl)phenyl group, which results in the formation of the low-spin complex with an unprecedented (d(xy))2(d(xz), d(yz))3 ground state despite the coordination of (t)BuNC.  相似文献   

13.
Density functional and multiconfigurational (ab initio) calculations have been performed on [M(2)X(8)](2-) (X = Cl, Br, I) complexes of 4d (Mo, Tc, Ru), 5d (W, Re, Os), and 5f (U, Np, Pu) metals in order to investigate general trends, similarities and differences in the electronic structure and metal-metal bonding between f-block and d-block elements. Multiple metal-metal bonds consisting of a combination of sigma and pi interactions have been found in all species investigated, with delta-like interactions also occurring in the complexes of Tc, Re, Np, Ru, Os, and Pu. The molecular orbital analysis indicates that these metal-metal interactions possess predominantly d(z2) (sigma), d(xz) and d(yz) (pi), or d(xy) and d(x2-y2) (delta) character in the d-block species, and f(z3) (sigma), f(z2x) and f(z2y) (pi), or f(xyz) and f(z) (delta) character in the actinide systems. In the latter, all three (sigma, pi, delta) types of interaction exhibit bonding character, irrespective of whether the molecular symmetry is D(4h) or D(4d). By contrast, although the nature and properties of the sigma and pi bonds are largely similar for the D(4h) and D(4d) forms of the d-block complexes, the two most relevant metal-metal delta-like orbitals occur as a bonding and antibonding combination in D(4h) symmetry but as a nonbonding level in D(4d) symmetry. Multiconfigurational calculations have been performed on a subset of the actinide complexes, and show that a single electronic configuration plays a dominant role and corresponds to the lowest-energy configuration obtained using density functional theory.  相似文献   

14.
Bleomycin (Blm) is an antitumor agent that requires iron and oxygen for strand cleavage of DNA. In this study, ferric bleomycin, Fe(III)Blm, or the nitric oxide adduct of ferrous bleomycin, ON-Fe(II)Blm, were bound to one-dimensionally oriented DNA fibers. Reductive nitrosylation of Fe(III) complexes took place in situ on B-form DNA fibers. Electron paramagnetic resonance (EPR) spectra were obtained as a function of the angle phi between the magnetic field B and the fiber axis Zf. For comparison, EPR spectra were acquired for ON-Fe(II)TMpyP and ON-Fe(II)TMpyP-Im on oriented DNA fibers, where TMpyP is 5,10,15,20-tetrakis(1-methyl-4-pyridino)porphyrin and Im is imidazole. EPR spectra showed both low-spin Fe(III)Blm and ON-Fe(II)Blm bound to B-form DNA in two slightly different binding orientations in the ratio of 1:0.2. With A-form DNA, a fraction of bound Fe(III)Blm was high spin. Specifically, the angle beta between the fiber axis Zf and the g axis, gz, perpendicular to or nearly perpendicular to the equatorial plane of the iron complex was estimated as 20 degrees and 25 degrees for ON-Fe(II)Blm and 30 degrees and 25 degrees for Fe(III)Blm, respectively. The angle gamma that determines the orientation of gx and gy axes was estimated as 90 degrees for the two ON-Fe(II)Blm species and 10 degrees for the two Fe(III)Blm species, respectively. The NO was held rigidly in place as the temperature increased from 123 K to room temperature for ON-Fe(II)Blm but not for ON-Fe(II)TMpyP or ON-Fe(II)TMpyP-Im. It is hypothesized that the NO is structurally oriented by hydrogen bonding like the peroxide is held in HO2(-)-Co(III)Blm (Wu et al. J. Am. Chem. Soc. 1996, 118, 1281-1294). The EPR parameters are consistent with a six-coordinate complex for ON-Fe(II)Blm, although the superhyperfine structure from the trans nitrogen was not detected. The increase in g value anisotropy upon binding ON-Fe(II)Blm to DNA fiber may be caused by an increase in the overlap of d pi and 2p pi* orbitals induced by an interaction of NO with DNA and/or by a perturbation of d orbitals due to the pyrimidine-guanine interaction. It is concluded that the EPR parameters of ON-Fe(II)Blm and Fe(III)Blm bound to oriented DNA support the hypothesis that FeBlm species bind to DNA with adduct structures similar to those formed by related CoBlm species and DNA.  相似文献   

15.
Introduction of a single meso substituent into ClFe(III)(OEP) or K[(NC)(2)Fe(OEP)] results in significant changes in the geometric and/or spectroscopic properties of these complexes. The mono-meso-substituted iron(III) complexes ClFe(III)(meso-Ph-OEP), ClFe(III)(meso-n-Bu-OEP), ClFe(III)(meso-MeO-OEP), ClFe(III)(meso-Cl-OEP), ClFe(III)(meso-NC-OEP), ClFe(III)(meso-HC(O)-OEP), and ClFe(III)(meso-O(2)N-OEP) have been isolated and characterized by their UV/vis and paramagnetically shifted (1)H NMR spectra. The structures of both ClFe(III)(meso-Ph-OEP) and ClFe(III)(meso-NC-OEP) have been determined by X-ray crystallography. Both molecules have five-coordinate structures typical for high-spin (S = 5/2) iron(III) complexes. However, the porphyrins themselves no longer have the domed shape seen in ClFe(III)(OEP), and the N(4) coordination environment possesses a slight rectangular distortion. These high-spin, mono-meso-substituted iron(III) complexes display (1)H NMR spectra in chloroform-d solution which indicate that the conformational changes seen in the solid-state structures are altered by normal molecular motion to produce spectra consistent with C(s) molecular symmetry. In pyridine solution the high-spin six-coordinate complexes [(py)ClFe(III)(meso-R-OEP)] form. In methanol solution in the presence of excess potassium cyanide, the low-spin six-coordinate complexes K[(NC)(2)Fe(III)(meso-R-OEP)] form. The (1)H NMR spectra of these show that electron-donating substituents produce an upfield relocation of the meso-proton chemical shifts. This relocation is interpreted in terms of increased contribution from the less common (d(xz),d(yz))(4)(d(xy))(1) ground electronic state as the meso substituent becomes more electron donating.  相似文献   

16.
The iron complexes of 5,10,15,20-tetraphenyl-21-oxaporphyrin (OTPP)H have been investigated. Insertion of iron(II) followed by one-electron oxidation yielded a high-spin, six-coordinate (OTPP)Fe(III)Cl(2) complex. The reduction of (OTPP)Fe(III)Cl(2) has been accomplished by means of moderate reducing reagents producing high-spin five-coordinate (OTPP)Fe(II)Cl. The molecular structure of (OTPP)Fe(III)Cl(2) has been determined by X-ray diffraction. The iron(III) 21-oxaporphyrin skeleton is essentially planar. The furan ring coordinates in the eta(1) fashion through the oxygen atom, which acquires trigonal geometry. The iron(III) apically coordinates two chloride ligands. Addition of potassium cyanide to a solution of (OTPP)Fe(III)Cl(2) in methanol-d(4) results in its conversion to a six-coordinate, low-spin complex [OTPP)Fe(III)(CN)(2)] which is spontaneously reduced to [OTPP)Fe(II)(CN)(2)](-) by excess cyanide. The spectroscopic features of [OTPP)Fe(III)(CN)(2)] correspond to the common low-spin iron(III) porphyrin (d(xy))(2)(d(xz)d(yz))(3) electronic configuration. Titration of (OTPP)Fe(III)Cl(2) or (OTPP)Fe(II)Cl with n-BuLi (toluene-d(8), 205 K) resulted in the formation of (OTPP)Fe(II)(CH(2)CH(2)CH(2)CH(3)). (OTPP)Fe(II)(n-Bu) decomposes via homolytic cleavage of the iron-carbon bond to produce (OTPP)Fe(I). The EPR spectrum (toluene-d(8), 77 K) is consistent with a (d(xy))(2)(d(xz))(2)(d(yz))(2)(d(z)(2)(1)(d[(x)(2)-(y)(2)])(0) ground electronic state of iron(I) oxaporphyrin (g(1) = 2.234, g(2) = 2.032, g(3) = 1.990). The (1)H NMR spectra of (OTPP)Fe(III)Cl(2), (OTPP)Fe(III)(CN)(2), ([(OTPP)Fe(III))](2)O)(2+), and (OTPP)Fe(II)Cl have been analyzed. There are considerable similarities in (1)H NMR properties within each iron(n) oxaporphyrin-iron(n) regular porphyrin or N-methylporphyrin pair (n = 2, 3). Contrary to this observation, the pattern of downfield positions of pyrrole resonances at 156.2, 126.5, 76.3 ppm and furan resonance at 161.4 ppm (273 K) detected for the two-electron reduction product of (OTPP)Fe(III)Cl(2) is unprecedented in the group of iron(I) porphyrins.  相似文献   

17.
Exchange coupling across the cyanide bridge in a series of novel cyanometalate complexes with CuII-NC-MIII (M = Cr and low-spin Mn, Fe) fragments has been studied using the broken-symmetry DFT approach and an empirical model, which allows us to relate the exchange coupling constant with sigma-, pi-, and pi*-type spin densities of the CN- bridging ligand. Ferromagnetic exchange is found to be dominated by pi-delocalization via the CN- pi pathway, whereas spin polarization with participation of sigma orbitals (in examples, where the dz2 orbital of MIII is empty) and pi* orbitals of CN- yields negative spin occupations in these orbitals, and reduces the CuII-MIII exchange coupling constant. When the dz2 orbital of MIII is singly occupied, an additional positive spin density appears in the sigma(CN) orbital and leads to an increase of the ferromagnetic Cu-NC-M exchange constant. For low-spin [MIII(CN)6]3- complexes, the dz2 orbital occupancy results in high-spin metastable excited states, and this offers interesting aspects for applications in the area of molecular photomagnetism. The DFT values of the exchange coupling parameters resulting from different occupations of the t2g orbitals of low-spin (t2g5) FeIII are used to discuss the effect of spin-orbit coupling on the isotropic and anisotropic exchange coupling in linear Cu-NC-Fe pairs.  相似文献   

18.
The binuclear copper(II) and tetranuclear diiron(III)-porphyrin-dicopper(II) complexes with the Schiff-base ligands of N,N′-bis(2-imidazolaldehyde)ethylenediimine, N,N′-bis(2-imidazolaldehyde)-p-phenyldiimine, N,N-bis(acetylpyrazine)-ethylenediimine and N,N′-bis(acetylpyrazine)-p-phenyldiimine have been prepared and characterized. The magnetic data indicated that the spin ground states and the magneic interaction between Cu(II)-Cu(II) or Fe(III)-Cu(II) are dependent on the nature of the bridging ligands. A weak antiferromagnetic interaction between Fe(III) and Cu(II) is evident from the temperature-dependent magnetic measurements. The Mössbauer spectra of iron(III) -porphyrin sites showed an asymmetric quadrupole doublet consistent with high-spin iron(III) S = 5/2.  相似文献   

19.
Calculable results: Complex density functional calculations and spin distribution analyses have been performed for planar and saddled iron(III) porphyrin complexes. The spin populations and the extent of the interactions between the metal and the porphyrin orbitals were determined, which can explain the large change of meso-carbon atom chemical shifts observed for different porphyrin ligands.  相似文献   

20.
Reduction of nitro-aromatic compounds (NACs) proceeds through intermediates with a partial electron transfer into the nitro group from a reducing agent. To estimate the extent of such a transfer and, therefore, the activity of various model ferrous-containing reductants toward NAC degradation, the unrestricted density functional theory (DFT) in the basis of paired L?wdin-Amos-Hall orbitals has been applied to complexes of nitrobenzene (NB) and model Fe(II) hydroxides including cationic [FeOH]+, then neutral Fe(OH)2, and finally anionic [Fe(OH)3]-. Electron transfer is considered to be a process of unpairing electrons (without the change of total spin projection Sz) that reveals itself in a substantial spin contamination of the unrestricted solution. The unrestricted orbitals are transformed into localized paired orbitals to determine the orbital channels for a particular electron-transfer state and the weights of idealized charge-transfer and covalent electron structures. This approach allows insight into the electronic structure and bonding of the {Fe(PhNO2)}6 unit (according to Enemark and Feltham notation) to be gained using model nitrobenzene complexes. The electronic structure of this unit can be expressed in terms of pi-type covalent bonding [Fe+2(d6, S = 2) - PhNO2(S = 0)] or charge-transfer configuration [Fe+3(d5, S = 5/2) - {PhNO2}- ((pi*)1, S = 1/2)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号