首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C0-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations.  相似文献   

2.
We deal with an autonomous Hamiltonian system with two degrees of freedom. We assume that the Hamiltonian function is analytic in a neighborhood of the phase space origin, which is an equilibrium point. We consider the case when two imaginary eigenvalues of the matrix of the linearized system are in the ratio 3: 1. We study nonlinear conditionally periodic motions of the system in the vicinity of the equilibrium point. Omitting the terms of order higher then five in the normalized Hamiltonian we analyze the so-called truncated system in detail. We show that its general solution can be given in terms of elliptic integrals and elliptic functions. The motions of truncated system are either periodic, or asymptotic to a periodic one, or conditionally periodic. By using the KAM theory methods we show that most of the conditionally periodic trajectories of the truncated systems persist also in the full system. Moreover, the trajectories that are not conditionally periodic in the full system belong to a subset of exponentially small measure. The results of the study are applied for the analysis of nonlinear motions of a symmetric satellite in a neighborhood of its cylindric precession.  相似文献   

3.
For an analytic differential system in RnRn with a periodic orbit, we will prove that if the system is analytically integrable around the periodic orbit, i.e. it has n−1n1 functionally independent analytic first integrals defined in a neighborhood of the periodic orbit, then the system is analytically equivalent to its Poincaré–Dulac type normal form. This result is an extension of analytically integrable differential systems around a singularity to the ones around a periodic orbit.  相似文献   

4.
Borg’s criterion is used to prove the existence of an exponentially asymptotically stable periodic orbit of an autonomous differential equation and to determine its domain of attraction. In this article, this method is generalized to almost periodic differential equations. Both sufficient and necessary conditions are obtained for the existence of an exponentially stable almost periodic solution. The condition uses a Riemannian metric, and an example for the explicit construction of such a metric is presented.  相似文献   

5.
We describe the set of bounded or almost periodic solutions of the following Liénard system: , where is almost periodic, is a symmetric and nonsingular linear operator, and F denotes the gradient of the convex function F on RN. Then, we state a result of existence and uniqueness of almost periodic solution.  相似文献   

6.
In this paper,the almost periodic nonautonomous diffusive food chain system of threespecies is discussed. By using the comparison theorem and V-function method,the author provesthe existence and uniqueness of a positive almost periodic solution,and its stability under disturbances from the hull.  相似文献   

7.
In this paper, we get the existence of periodic and homoclinic solutions for a class of asymptotically linear or sublinear Hamiltonian systems with impulsive conditions via variational methods. However, without impulses, there is no homoclinic or periodic solution for the system considered in this paper. Moreover, our results can be used to study the existence of periodic and homoclinic solutions of difference equations.  相似文献   

8.
In this paper we use Rab’s lemma [M. Ráb, Über lineare perturbationen eines systems von linearen differentialgleichungen, Czechoslovak Math. J. 83 (1958) 222–229; M. Ráb, Note sur les formules asymptotiques pour les solutions d’un systéme d’équations différentielles linéaires, Czechoslovak Math. J. 91 (1966) 127–129] to obtain new sufficient conditions for the asymptotic equivalence of linear and quasilinear systems of ordinary differential equations. Yakubovich’s result [V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, New Jersey, 1966; V.A. Yakubovich, On the asymptotic behavior of systems of differential equations, Mat. Sb. 28 (1951) 217–240] on the asymptotic equivalence of a linear and a quasilinear system is developed. On the basis of the equivalence, the existence of asymptotically almost periodic solutions of the systems is investigated. The definitions of biasymptotic equivalence for the equations and biasymptotically almost periodic solutions are introduced. Theorems on the sufficient conditions for the systems to be biasymptotically equivalent and for the existence of biasymptotically almost periodic solutions are obtained. Appropriate examples are constructed.  相似文献   

9.
We use fixed point index methods to study the set of forced oscillations in periodically perturbed systems of ODEs on manifolds. We prove the existence of branches of periodic solutions for a particular class of system where, contrary to the usual ‘nondegeneracy’ assumption, the leading vector field is neither trivial nor has a set of compact zeros.  相似文献   

10.
This paper is devoted to the study of Lyapunov type inequalities for periodic conservative systems. The main results are derived from a previous analysis which relates the best Lyapunov constants to some especial (constrained or unconstrained) minimization problems. We provide some new results on the existence and uniqueness of solutions of nonlinear resonant and periodic systems. Finally, we present some new conditions which guarantee the stable boundedness of linear periodic conservative systems.  相似文献   

11.
In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate families of periodic orbits inside and outside the homoclinic cycles via the identification given by the impact law. By approximating the Poincaré map to O(ε)O(ε) directly, a general method of Melnikov type for detecting the existence of asymmetric Type II subharmonic orbits outside the homoclinic cycles is presented.  相似文献   

12.
《Quaestiones Mathematicae》2013,36(7):885-905
Abstract

This paper is concerned with almost periodic solutions for nonlinear non-instantaneous impulsive differential equations with variable structure. With the help of the notation of non-instantaneous impulsive Cauchy matrix, mild sufficient conditions are derived to guarantee the existence, uniqueness of asymptotically stable almost periodic solutions. Both example and numerical simulation are given to illustrate our effectiveness of the above results. As one expects, the results presented here have extended and improved some previous results for instantaneous impulsive differential equations.  相似文献   

13.
In this paper we study the quadratic homogeneous perturbations of the 3-dimensional May–Leonard system with α+β=2α+β=2. It is shown that there are perturbed systems having exactly one or two limit cycles bifurcated from the periodic orbits of May–Leonard system. This is proved by estimating the number of zeros of the first and the second order Melnikov functions.  相似文献   

14.
In this paper, we study the existence of almost periodic solutions of a delay logistic model with fixed moments of impulsive perturbations. By using a comparison theorem and constructing a suitable Lyapunov functional, a set of sufficient conditions for the existence and global attractivity of a unique positive almost periodic solution is obtained. As applications, some special models are studied; our new results improve and generalize former results.  相似文献   

15.
We consider the periodic problem for differential inclusions in $$ \user2{\mathbb{R}}^{\rm N} $$ with a nonconvex-valued orientor field F(t, ζ), which is lower semicontinuous in $$ \zeta \in \user2{\mathbb{R}}^{\rm N} $$ Using the notion of a nonsmooth, locally Lipschitz generalized guiding function, we prove that the inclusion has periodic solutions. We have two such existence theorems. We also study the “convex” periodic problem and prove an existence result under upper semicontinuity hypothesis on F(t, ·) and using a nonsmooth guiding function. Our work was motivated by the recent paper of Mawhin-Ward [23] and extends the single-valued results of Mawhin [19] and the multivalued results of De Blasi-Górniewicz-Pianigiani [4], where either the guiding function is C1 or the conditions on F are more restrictive and more difficult to verify.  相似文献   

16.
The so-called noose bifurcation is an interesting structure of reversible periodic orbits that was numerically detected by Kent and Elgin in the well-known Michelson system. In this work we perform an analysis of the periodic behavior of a piecewise version of the Michelson system where this bifurcation also exists. This variant is a one-parameter three-dimensional piecewise linear continuous system with two zones separated by a plane and it is also a representative of a wide class of reversible divergence-free systems.  相似文献   

17.
In this paper, we study the existence and exponential convergence of positive almost periodic solutions for the generalized Nicholson’s blowflies model with multiple time-varying delays. Under proper conditions, we establish some criteria to ensure that the solutions of this model converge locally exponentially to a positive almost periodic solution. Moreover, we give some examples to illustrate our main results.  相似文献   

18.
The aim of this paper is to investigate sufficient conditions (Theorem 1) for the nonexistence of nontrivial periodic solutions of equation (1.1) withp ≡ 0 and (Theorem 2) for the existence of periodic solutions of equation (1.1).  相似文献   

19.
In this paper, we study the existence of periodic solutions of the Rayleigh equations
x+f(x)+g(x)=e(t).  相似文献   

20.
We consider the existence of periodic orbits in a class of three-dimensional piecewise linear systems. Firstly, we describe the dynamical behavior of a non-generic piecewise linear system which has two equilibria and one two-dimensional invariant manifold foliated by periodic orbits. The aim of this work is to study the periodic orbits of the continuum that persist under a piecewise linear perturbation of the system. In order to analyze this situation, we build a real function of real variable whose zeros are related to the limit cycles that remain after the perturbation. By using this function, we state some results of existence and stability of limit cycles in the perturbed system, as well as results of bifurcations of limit cycles. The techniques presented are similar to the Melnikov theory for smooth systems and the method of averaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号