首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 288 毫秒
1.
It was shown that addition of Pt(Pd) and Cs+ to WO3 and MoO3 increases their catalytic activity in the oxidation of CO, at the same time there was a considerable broadening of the low temperature region of the reaction. It was established that formation of an active surface occurs as a result of partial reduction of the molybdenum and tungsten oxides. It is proposed that the reaction occurs at the phase boundary between Pt(Pd) and W and Mo oxides containing oxygen vacancies. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 4, pp. 257–260, July–August, 2005.  相似文献   

2.
We have shown that additions of Pt(Pd) and Cs+ to WO3 significantly increase its specific surface area and catalytic activity in H2 oxidation. After reduction, the promoted specimens contain the phases WO3, WO2.9, HxWO3; and in the case of Cs+ additions, CsxWO3. According to X-ray photoelectron spectroscopy (XPS), the Pt and Pd have an oxidation state close to 0, while tungsten has a +5 oxidation state. The W:O ratio indicates the content of oxygen vacancies in the surface layer. The data are explained taking into account hydrogen spillover from Pt(Pd) to the support.__________Translated from Teoreticheskaya i Eksperimental’naya Khimiya, Vol. 41, No. 2, pp. 126–129, March– April, 2005.  相似文献   

3.
The catalytic activity in the oxidation of hydrogen (in the gaseous state in the presence of excess oxygen) has been studied for samples of Pt(Pd)/Ta2O5−x, formed by reduction with hydrogen. The samples obtained had greater activity than the traditional catalysts Pt(Pd)/Al2O3. According to X-ray diffraction analysis and electron microscopic studies, Ta2O5−x becomes amorphous with the formation of more reduced non-stoichiometric oxygen-deficient tantalum oxides with a surface layer of catalyst. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 3, pp. 180–185, May–June, 2008.  相似文献   

4.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

5.
The surface area and the pentane isomerization activity of Pt/MoO3 were enlarged by H2 reduction. The enlargements was observed only when the reduction proceeded through the formation of hydrogen molybdenum bronze, HxMoO3. The catalytic activities of H2-reduced MoO3 with different noble metals for pentane isomerization and 2-propanol dehydration depended on the ability of noble metal to produce the HxMoO3 phases. H2-reduced Pt/MoO3 was more active for pentane isomerization than Pt/H, and its activity was comparable to that of Pt/HZSM-5. In heptane isomerization, H2-reduced Pt/MoO3 exhibited a lower activity than Pt/H, although heptane was isomerized very selectively. Strong adsorption of heptane onto H2-reduced Pt/MoO3 is likely to be a reason for its lower heptane isomerization activity.  相似文献   

6.
Electroplating of WO3-Pt has been carried out using a suitable plating bath solution and optimum working conditions. X-ray and SEM studies of the deposit reveal a smooth and uniform distribution of micro-particles on the surface. New phases of the plated material appear on heat treatment. The electrocatalytic activity of the WO3-Pt co-deposit is considerably higher than for platinum alone. WO3 in the WO3-Pt co-deposit reduces the retardation effect of methanol oxidation by the reaction intermediate observed in the case of Pt alone. WO3-Pt co-deposits exhibit low overpotential for methanol oxidation in both acidic and alkaline media at low temperature and have good corrosion resistance in electrolytic media. The electrochemical parameters for methanol oxidation of these co-deposits depend on trace amounts of the platinum, heat treatment and the microstructure of the coating.  相似文献   

7.
X-ray photoelectron spectroscopy (XPS) was used to establish that the surface layer of catalysts obtained by the reduction of Ta2O5 with added Pt and Pd by hydrogen contains nonstoichiometric oxides TaOx, which enhance the activity of the catalyst. A study of the hydrogen oxidation kinetics showed that the kinetic relationships are described satisfactorily by the Eley-Riedel mechanism, according to which the reaction occurs by an interaction of hydrogen from the gas phase with adsorbed oxygen. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 4, pp. 254–258, July–August, 2008.  相似文献   

8.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

9.
It has been shown that the phases HxMO3 and MO3−x (M = Mo, W), obtained by reduction of the oxides WO3 and MoO3 with hydrogen with supported Pt(Pd) (0.5 mass %), have higher catalytic activity in the deep oxidation of methane than the catalysts Pt/Al2O3 and Pd/Al2O3 with the same amount of supported metal. At temperatures above 700 K the activity of these catalysts decreases in consequence of the thermal decomposition of the phases HxMO3 and MO3−x and they become similar in activity with Pt(Pd)/Al2O3. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 2, pp. 126–129, March–April, 2008.  相似文献   

10.
Solid solution phases of a formula Fe8V10W16–xMoxO85 where 0≤x≤4, have been obtained, possessing a structure of the compound Fe8V10W16O85. It was found on the base of XRD and DTA investigations that these solution phases melted incongruently, with increasing the value of x, in the temperature range from 1108 (x=0) to 1083 K (x=4) depositing Fe2WO6 and WO3. The increase of the Mo6+ ions content in the crystal lattice of Fe8V10W16O85 causes the lattice parameters a=b contraction with cbeing almost constant. IR spectra of the Fe8V10W16–xMoxO85 solid solution phases have been recorded.  相似文献   

11.
The catalysts based on MoO3/Al2O3 were synthesized and tested using aqueous hydrogen peroxide as the oxidant in the oxidative desulfurization of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) into the corresponding sulfones. Among catalysts tested, 15%(MoO3–WO3)/Al2O3 prepared by a conventional impregnation method was considerably active for the oxidation of thiophene, BT and DBT, which could achieve higher than 99.2% conversions at lower reaction temperature (≤338 K). The use of hexadecyltrimethyl ammonium bromide as the phase-transfer reagent in small amounts could promote the reaction efficiently.  相似文献   

12.
Nano-structured WO3-TiO2 layers were prepared by the sol-gel route. To obtain transparent, porous and crack free layers up to 0.8 μ m with a single dipping cycle a templating strategy was used. As a template three-dimensionally network based on organically modified silane was introduced to the WO3 and TiO2 sols. The WO3 layers were dip-coated onto the conductive glass substrate (TCO) and the TiO2 layers on the top of the WO3 layer. The morphology and the structure of the layers were determined by Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-Ray Spectroscopy (EDXS), Auger and Infrared spectroscopy. SEM image of the WO3-TiO2 layer confirmed the nano-porosity of the layers and give the size of the particles of about 10 nm for TiO2 and 30 nm for WO3 layer. Further analysis indicated that the titanium sol penetrates the WO3 layer. Particles in the WO3 layer consist of a crystalline monoclinic WO3 core surrounded by a 5–10 nm amorphous phase consisting of WO3, TiO2 and SiO2. The WO3-TiO2 layers were used to assemble all solid state photoelectrochromic (PE) devices. Under 1 sun irradiation (1000 W/m2) the visible transmittance of the PE device changes from 62% to 1.6%. The colouring and bleaching processes last about 10 minutes.  相似文献   

13.
The sol-gel processing of lead-free (Na,K) NbO3 ferroelectric films was studied. Sodium ethoxide (NaOC2H5) and potassium ethoxide (KOC2H5) were prepared by reacting solid Na and K with ethanol (99.7%) in a solvent of 2-methoxyethanol. 0.5-μm-thick (Na,K)NbO3 thin films with orthorhombic perovskite structure were obtained by pyrolyzing at 400°C and annealing at 800–900°C. The films had relatively dense and uniform microstructure with grain size of about 50 nm, whose ferroelectricity was proved by the P-E hysteresis loop measurement. It was found that excess K was effective to reduce the annealing temperature for the crystallization of sol-gel-derived (Na,K)NbO3 thin films.  相似文献   

14.
Nanocrystalline BiFe0.6Mn0.4O3 powders were synthesized by sol–gel citrate method and studied for gas sensing behavior to reducing gases such as LPG, CO, CH4 and NH3. The composition and the structure of the powders have been investigated by means of XRD and TEM. The result shows that the BiFe0.6Mn0.4O3 powders have a rhombohedral distorted perovskite structure with an average crystallite size of 35–40 nm. The BiFe0.6Mn0.4O3-based LPG sensor shows better sensitivity at an operating temperature of 250 °C. The dispersion of Pd on BiFe0.6Mn0.4O3 in the ratio of 0.8 wt.% improved the sensitivity, selectivity and response time. In addition, it reduced the operating temperature from 250 to 210 °C for LPG sensor. The response time for LPG was less than 1 min.  相似文献   

15.
The electronic structure of the (η2-C60)Pd[P(Ph2)C5H4]2Fe complex was calculated by the “hybrid” B3LYP method. Comparison of the experimental X-ray emission C-Kα spectrum and theoretical spectrum of the compound demonstrated that the electron interactions between the C60 core, palladium atom, and organometallic fragment are described correctly in the framework of the quantum chemical method used. The electronic structure of the organometallic fullerene complex can be presented as a set of blocks of orbitals corresponding to different types of chemical bond. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2640–2644, December, 2005.  相似文献   

16.
Er3+-doped Al2O3 nanopowders have been prepared by the non-aqueous sol-gel method using the aluminum isopropoxide as precursor, acetylacetone as a chelating agent, nitric acid as a catalyzer, and hydrated erbium nitrate as a dopant under isopropanol environment. The different phase structure, including three crystalline types of (Al, Er)2O3 phases, α, γ, θ, and an Er–Al–O stoichiometric compound phase, Al10Er6O24, was observed for the 0.01–0.5 mol% Er3+-doped Al2O3 nanopowders at the sintering temperature of 1,000 °C. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978 nm semiconductor laser diodes excitation. With increasing Er3+ doping concentration from 0.01 to 0.1 mol%, the intensity of the green and red emissions increased with a decrease of the intensity ratio of the green to red emission. When the Er3+ doping concentration rose to 5 mol%, the intensity of the green and red emissions decreased with an increase of their intensity ratio. The maximum intensity of both the green and red emissions with the minimum of intensity ratio was obtained, respectively, for the 0.1 mol% Er3+-doped Al2O3 nanopowders composed of a single α-(Al,Er)2O3 phase. The intensity ratio of the green emission at 523 and 545 nm increased monotonously for all Er3+ doping concentrations. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3+-doped Al2O3 nanopowders.  相似文献   

17.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

18.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

19.
A new type of oxide–salt composite electrolyte, yttrium doped ceria YDC–Ca3(PO4)2–K3PO4, was developed and demonstrated for its promising use for ammonia synthesis. Using this composite electrolyte, ammonia was synthesized from nitrogen and natural gas at atmospheric pressure in the solid-state proton conducting cell reactor, and the optimal condition for ammonia production was determined . The evolved rate of ammonia is up to 6.95×10−9 mol s−1 cm−2.  相似文献   

20.
Molybdenum trioxide (MoO3) xerogel films modified with poly(vinyl alcohol)+poly(vinyl pyrrolidone) (PVP+PVA) polyblends were obtained by ion-exchange method with sol-gel technique. Investigations were conducted using X-ray “diffractometry”, Fourier transform infrared spectroscopy, and cyclic voltammetry. The results show that the H atoms in polyblend are H-bonded with the O atoms in the Mo=O bonds of MoO3 xerogel, which effectively shield the electrostatic interaction between MoO3 interlayer and Li+ ions when MoO3 xerogel is modified by the intercalation of (PVP+PVA). The reversibility of the insertion/extraction of Li+ ions is greatly improved by the modification with polyblend of MoO3 nanocomposite films. MoO3 and (PVP+PVA) x MoO3 (x = 0, 0.5) nanobelts were obtained by a simple hydrothermal process from MoO3 sol. The electrochemical cells with configuration Li/(LiPF6+EC+DMC)/MoO3 modified by (PVP+PVA) were fabricated and their discharge profiles studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号