首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Soluble melanin precursors are present in serum and may act as skin chromophores contributing to UVR-induced oxidative damage. Our study aimed to determine whether the soluble eumelanin precursor 5,6-dihydroxy-indole-2-carboxylic acid (DHICA) photosensitizes DNA damage in human keratinocytes exposed to UVA irradiation. The HaCaT keratinocytes were incubated with and without DHICA, before irradiation with broadband UVA (320-400 nm). The DNA photodamage was assessed using the comet assay that detects frank single-strand breaks (SSB) and specific oxidative lesions with the addition of endonuclease III. Without DHICA incubation, there was no significant increase in SSB, compared to unirradiated cells, for doses up to 48.5 J/cm2 (< 1 minimum erythemal dose). Preincubation with 0.5 microM DHICA caused an increase in SSB at every UVA dose (significant from 12.1 to 48.5 J/cm2), while varying the DHICA concentration (0.125-2 microM) showed this effect to be concentration dependent such that SSB increased and endonuclease III-sensitive sites decreased with increasing DHICA concentration. The irradiation of cells in the presence of antioxidants (catalase, mannitol and histidine) suggests that DHICA-induced photosensitization is mediated via singlet oxygen and, to a lesser extent, hydroxyl radicals. These results indicate that DHICA can induce strand breaks with UVA at clinically relevant doses via a mechanism involving reactive oxygen species.  相似文献   

2.
The in vitro effects of 8-MOP (concentrations of 20, 100 and 500 ng/ml) alone or in combination with UVA on mediator release from human basophils and skin mast cells (HSMC), activated with immunological and non-immunological stimuli, were investigated. With respect to basophils activated with anti-IgE serum, the results of this study show that: (i) 8-MOP alone inhibits histamine, LTC(4), IL-4 and IL-13 release concentration dependently with a maximal effect at 500 ng/ml (a concentration not reached in vivo); and (ii) UVA irradiation (5 J/cm(2)), after 8-MOP incubation, enhances this inhibitory effect on all released mediators, but for IL-4 and IL-13 the percentage inhibition is also significant for the 8-MOP concentrations (20-100 ng/ml) employed in vivo during PUVA treatment. Moreover, histamine release from basophils activated with non-immunological stimuli (FMLP and A23187) is inhibited by 8-MOP, alone or in combination with UVA. With respect to the HSMC activated with anti-IgE serum, the results show that: (i) 8-MOP alone reduces histamine release concentration dependently; and (ii) this inhibitory effect is enhanced by UVA irradiation (5 J/cm(2)). Histamine release from HSMC activated with A23187 is not modified either by 8-MOP alone or by 8-MOP plus UVA.  相似文献   

3.
Whereas previous studies have indicated that DNA damage as a result of 8-methoxypsoralen (8-MOP) and UVA treatment leads to cell death, this study establishes the minimum concentrations of 8-MOP and UVA necessary to induce apoptosis in human T-lymphocytic and mono-cytic cell lines. In order to assess apoptosis, we used fluorescent microscopy to examine changes in light scattering as well as internucleosomal DNA fragmentation. Generation of a dose response curve showed that the minimum combination of UVA and 8-MOP that was necessary to induce greater than background levels of apoptosis within 24 h of treatment was 0.5 J/cm2 UVA and 12.5 ng/mL of 8-MOP. A striking observation was that UVA alone at doses 1.0 J/cm2, but not 8-MOP alone (6300 ng/mL), induced significant apoptosis in the Sup-T1 cell line within 24 h. Although the percentage of apoptotic Sup-T1 cells induced by UVA alone was not as great as that of 8-MOP and UVA in combination, a highly significant correlation between the product of the concentration of 8-MOP (ng/mL) times the dose of UVA (J/ cm2) and the percentage of apoptotic cells was observed. This correlation provides an important tool for studying the relationship of UVA-induced DNA damage to apoptosis induction. Moreover, it will provide a means by which early events in the apoptotic pathway can be dissected.  相似文献   

4.
Photopheresis is an extracorporeal form of photochemo-therapy with 8-methoxypsoralen (8-MOP) and UVA (PUVA). Patients ingest 8-MOP and then a psoralen-rich buffy coat is obtained by centrifugation and mixed with saline. This mixture is recirculated through a UVA radiation field and then reinfused. Photopheresis appears to be effective for several T cell-mediated disorders, because the treatment results in a specific immune response against the pathogenic clone of T cells involved. With PUVA therapy, the whole body of the patient is exposed to UVA, after ingestion of 8-MOP. Upon UVA exposure 8-MOP binds to, amongst others, DNA and induces DNA monoadducts and interstrand cross-links. As a result of these photoadducts photocarcinogenicity is a risk in PUVA. In PUVA for psoriasis, it proved that angular furocoumarins, although almost incapable of inducing DNA cross-links (less carcinogenic), are still effective. In order to determine if monoadducts induced by photopheresis could also be effective we used, specifically, 4,6,4'-trimethylangelicin (TMA). In this report, we compare the photodegradation of both TMA and 8-MOP under conditions relevant to the in vivo situation, as well as the effect both compounds have on the viability of rat lymphocytes as measured with the 3–(4,5-dimethylthia-zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. We show that TMA did not induce immunosuppression in vivo , even after extensive irradiation. In addition a dose dependency of 8-MOPNVA versus the induced immune suppression was carried out. It was shown that there is a log doselresponse correlation of r = 0.9205.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is a central regulator of neoangiogenesis in inflammatory and neoplastic conditions. Ultraviolet irradiation is one of the mainstays of dermatological therapy for various inflammatory skin diseases. In the present study we have compared the effects of UV irradiation on the production of VEGF by keratinocytes (KC) and by the KC-derived cell lines A431 and HaCaT. Irradiation of A431 and HaCaT cells with both UVA (10 J/cm2 and 20 J/cm2) and UVB (8 mJ/cm2 and 16 mJ/cm2) led to strong upregulation of VEGF mRNA and protein. Induction of VEGF by UVA and UVB in these cells was mediated by different pathways, i.e. the generation of free radicals and the secretion of (a) soluble factor(s), respectively. Unlike KC-derived cell lines, no increase in VEGF production was observed in KC in primary culture after irradiation with the same UV doses. Increasing the irradiation dose in these cells of UVA to 40 J/cm2 led to a marked decrease in soluble VEGF, whereas doses as high as 32 mJ/cm2 UVB only minimally affected VEGF levels. Reduction of VEGF production by KC might contribute to the effect of UVA irradiation in inflammatory skin diseases. The differential response of primary KC and autonomously growing KC-derived cell lines to the induction of VEGF by UV light could favor neoangiogenesis in the vicinity of epidermal tumor cells in vivo, thereby endowing them with a growth advantage over normal cells.  相似文献   

6.
Extracorporeal phototherapy (ECP) is a therapeutic approach based on photobiological effects of 8-methoxypsoralen (8-MOP) on white blood cells isolated from the blood, exposed to UVA and then reinfused into the patient. 8-MOP is presently the only drug approved for clinical application of ECP; therefore, identification of other photosensitizers with better photochemical and pharmacokinetic properties might enhance the efficacy of this treatment modality. Among such alternative drugs are 4,6,4'-trimethylangelicin (TMA) and chlorpromazine (CPZ), which have previously been studied in an animal model for ECP. In this current study, cellular bioavailability of 8-MOP, TMA and CPZ was investigated in vitro, using low doses of UVA relevant for the clinical setting of ECP. Our fluorescence microscopy study revealed that 8-MOP and CPZ penetrated readily into the cells, where they accumulated with similar kinetics. No distinct fluorescence was observed in cells incubated with TMA. We found that the phototoxic efficiency of 8-MOP was an order of magnitude greater than that of CPZ, i.e., to obtain a similar reduction in survival of cells subjected to photosensitization by the drugs, the concentration of CPZ needed to be 10 times higher than that of 8-MOP. The photoactivated TMA exhibited the highest pro-apoptotic efficiency. A clear indication of photoinduced formation of reactive oxygen species and peroxidation of lipids was observed only in CPZ-sensitized cells, suggesting different mechanisms for phototoxicity mediated by CPZ and by the two furocoumarins.  相似文献   

7.
Abstract It is well established that in healthy humans oral intake of 5-or 8-methoxypsoralen (5-and 8-MOP) is followed by a significant increase in plasma melatonin concentrations. The effect of psoralen on rat melatonin has been studied in vitro and in vivo and a stimulation of release or secretion from the pineal gland has been suggested. In this study we examined the time-related changes in plasma concentrations of 8-MOP, melatonin and 6-sulfatoxymelatonin in 15 patients admitted for routine psoralen plus UVA therapy. On the first day of treatment blood samples were collected before, and 30, 60 , 66 and 90 rnin after intake of 8-MOP (0.6 mg/kg). Although the rate of 8-MOP absorption vaned greatly, a significant increase ( P = 0.0002) in melatonin levels was found 60 min after 8-MOP intake. During UVA exposure a strongly correlated decrease in mean melatonin and mean 8-MOP concentrations was found, indicating an effect of UVA radiation, either direct or 8-MOP mediated, on circulating melatonin levels. Plasma 6-sulfatoxymelatonin concentrations decreased significantly between all time points, suggesting inhibition of melatonin metabolism.  相似文献   

8.
The Tg.AC mouse is a good predictor of carcinogenic potential when the test article is administered by dorsal painting (Tennant et al. (1995) Environ. Health Perspect. 103, 942). We have used lomefloxacin (LOME) and 8-methoxypsoralen (8-MOP) in combination with UVA to determine whether the Tg.AC transgenic mouse also responds to parenterally administered photocarcinogens. Female Tg.AC mice were given LOME (25 mg/kg intraperitoneal in normal saline) followed by UVA (25 J/cm2) 1-2 h later, five times every 2 weeks on a repetitive schedule. Other groups received LOME, UVA or vehicle alone. After 16 weeks, the mean numbers of papillomas/mouse +/- SD (% responding) were: saline, 0.3 +/- 0.5 (33%); UVA + saline, 1.3 +/- 0.6 (100%); LOME, 1.9 +/- 1.6 (86%) and LOME-UVA, 1.5 +/- 1.9 (64%). Only the 100% incidence of tumors in the UVA group and the maximum tumor yields in the LOME and UVA groups are significant (P < 0.05) when compared with the control. In a second study, Tg.AC mice were administered the classical photocarcinogen 8-MOP (8 mg/kg intragastric in corn oil) followed by 2 J/cm2 UVA 1-2 h later, five times every 2 weeks on a repetitive schedule. The second group received 8-MOP, whereas the third was exposed to UVA alone. Papillomas began to appear at 2 weeks in the 8-MOP-UVA group, and after 17 weeks the mean numbers of papillomas/mouse +/- SD (% responding) were: 8-MOP-UVA, 6.9 +/- 8.6 (93%); UVA + corn oil, 1.1 +/- 1.2 (69%) and 8-MOP, 1.1 +/- 1.6 (50%). The maximum tumor yield in the 8-MOP-UVA group was significantly higher (P < 0.01) than that in the other two groups. Our findings suggest that more studies need to be done before the Tg.AC mouse can be used with confidence to identify parenterally administered photocarcinogens.  相似文献   

9.
We report the effects of 8-methoxypsoralen (8-MOP) plus ultraviolet-A (UV-A) irradiation on interleukin-1 (IL-1) production by murine epidermal keratinocytes, correlating its effect on IL-1 with cell viability, DNA synthesis, and 8-MOP-DNA photoadduct formation. Freshly isolated murine keratinocytes were treated with various doses of 8-MOP (5-100 ng/mL; incubation time, 30 min) plus 1 J/cm2 UV-A and cultured for 1-3 days. The IL-1/epidermal cell-derived thymocyte-activating factor (ETAF) activity in both supernatant and cell extract was reduced proportionately with increasing doses of 8-MOP/UV-A. Interleukin-1 inhibitors induced by 8-MOP plus UV-A were not detected in either supernatant or cell extract. A clear reduction of the IL-1 production was induced by the treatment as low as 15 ng/mL 8-MOP plus 1 J/cm2 UV-A, which led to the formation of 0.52 8-MOP photoadducts per million DNa bases and affected neither cell viability nor DNA synthesis of the treated cells. Cells treated with 100 ng/mL 8-MOP and 1 J/cm2 UV-A exhibited 57% suppression of IL-1 production in both 2- and 3-day culture samples. This treatment resulted in the formation of 3.8 photoadducts per million bases as well as significant abrogation of DNA synthesis although cell viability was unchanged. These observations provide some insights into the phototoxicity mechanisms of 8-MOP and the effect of PUVA therapy on the cytokine regulation in keratinocytes.  相似文献   

10.
The genetic disease Fanconi anemia (FA), generally considered to be a DNA repair defect, has also been related to a deficiency in cellular defense against reactive oxygen species (ROS). Results show that mitochondrial matrix densification occurs rapidly and transiently in FA fibroblasts following 8-methoxypsoralen (8-MOP) photoreaction or ultraviolet A (320 to 380 nm) (UVA) irradiation. This effect is oxygen dependent because it is more important under 20 than under 5% oxygen tension. In contrast, in normal fibroblasts very little, if any, densification of mitochondrial matrix is induced by treatments even at the highest oxygen tension. The changes in matrix density in FA cells are accompanied by some modifications in transmembrane potential, linked to a Fenton-like reaction, and in mitochondrial cardiolipin content, differing from the responses of normal cells. These data are indicative of some sort of membrane damage induced by 8-MOP photoreaction and UVA irradiation, to which FA cells appear to be particularly sensitive.  相似文献   

11.
Exposure of the nonsteroidal anti-inflammatory drug suprofen (SUP) to UV-radiation results in the formation of radicals, reactive oxygen species (ROS), photodecarboxylated products and photoadducts with biomacromolecules. Using an ex vivo pigskin explant model, we investigated whether topical coapplication of the water-soluble antioxidants vitamin C (Lascorbic acid, ASC), N-acetyl-L-cysteine (NAC) or L-cysteine ethylester (CYSET) with SUP reduced ultraviolet A (UVA)-induced decomposition of SUP. UVA-induced changes in antioxidant bioavailability in the stratum corneum and epidermis were also studied. Epidermal bioavailability of SUP in sham-irradiated pigskin increased 2.2- to 4.1-fold after the lowest antioxidant doses (P < 0.05). As compared with no applied antioxidant, increasing doses of all tested antioxidants resulted in increased levels of SUP and decreased levels of photoproducts (P < 0.05). A maximal protection against SUP photodegradation of 70% was found after an ASC dose of 1 micromol/cm2; these values were 60% for a NAC dose of 10 micromol/cm2 and 50% for a CYSET dose of 5 micromol/cm2. Skin antioxidant levels increased with increasing applied dose (P < 0.05); the bioavailability of CYSET was approximately three-fold lower than that of ASC and NAC. UVA exposure resulted in 30-50% consumption of the topically applied ASC or NAC in the stratum corneum, whereas CYSET was not consumed. In conclusion, the topically applied water-soluble antioxidants ASC, NAC and CYSET protect against UVA-induced decomposition of SUP by scavenging radicals and ROS. Coapplication of these antioxidants may therefore be an effective way to reduce or prevent the phototoxic effects of SUP in vivo.  相似文献   

12.
Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.  相似文献   

13.
The turnover of 32P-labeled phospholipids in HUT 102 lymphoblasts was determined after a 2 h interaction of lymphoblasts with 8-methoxypsoralen (8-MOP) (15 micrograms ml-1), longwave UV light (UVA) irradiation and PUVA (8-MOP and UVA). In parallel experiments, micellar suspensions of lyso-phosphatidylcholine (PtdC), dipalmitoyl-PtdC and dilinoleoyl-PtdC, treated in a similar manner, served for the correlative assessments of cellular lipid changes. The dark reaction, UVA irradiation and PUVA all depressed total phospholipid levels in HUT 102 cells, although only PUVA induced a statistically significant decline. Thin layer chromatography (TLC) analysis revealed that neither UVA nor 8-MOP alone triggered any significant changes in the cellular content of phosphatidylinositol (PtdI), phosphatidylinositol 4-monophosphate (PtdIP) and phosphatidylinositol 4,5-bisphosphate (PtdIP2), whereas the lyso-PtdC and PtdI content of lymphoblasts showed a two-fold increase after PUVA. The TLC analysis of lyso-PtdC and micelles of dipalmitoyl-PtdC did not reveal any detectable changes after the dark reaction with 8-MOP, UVA irradiation and PUVA. In contrast, the derivatives of dark and UVA mediated reactions of 8-MOP with dilinoleoyl-PtdC were detected by TLC. These results suggest that the formation of 8-MOP derivatives of cellular phospholipids effected by PUVA, modulates the turnover of phosphoinositides and the rate of cellular proliferation.  相似文献   

14.
UVA irradiation is known to cause photoaging via production of reactive oxygen species (ROS) and activation of inflammatory processes. Previously, we have demonstrated that baicalin, a plant‐derived flavonoid possessing both antioxidant and anti‐inflammatory activity, protects mouse keratinocytes against damage from UVB irradiation. However, the role of baicalin in vivo has not been well studied, particularly in the setting of UVA irradiation. To explore the protective effects and mechanisms of baicalin treatment in mice after UVA irradiation, mice were exposed to acute and chronic doses of UVA irradiation with or without baicalin or vehicle. Skin samples were collected for histological staining, RNA isolation, flow cytometry and protein extraction. Our results demonstrate the protective effect of baicalin against UVA‐induced oxidative damage and inflammation in mouse skin. These effects are likely mediated via the TLR4 pathway, which may serve as a target for photochemoprevention against skin inflammation.  相似文献   

15.
CELL MEMBRANE DNA: A NEW TARGET FOR PSORALEN PHOTOADDUCT FORMATION   总被引:6,自引:0,他引:6  
The effects of 8-methoxypsoralen plus long wavelength ultraviolet radiation on cell membrane DNA were examined. Treatment of human lymphocytes with 100 ng/ml 8-methoxypsoralen and 5 J/cm2 UVA led to the formation of 7.1 +/- 3.8 photoadducts per million bases. A monoclonal antibody, specific for 8-methoxypsoralen 4',5'-monoadducts, was used to detect photoadducts in the cell membrane DNA of human lymphocytes and three lymphoblastoid cell lines. Treatment of lymphocytes with 8-MOP and UVA reduced the lymphocyte DNA binding capacity by 56%. Cell membranes of normal lymphocytes were shown to contain three high affinity DNA binding proteins of 28, 59, and 79 kDa, respectively.  相似文献   

16.
Ultraviolet-A (UVA) radiation causes significant oxidative stress because it leads to the generation of reactive oxygen species (ROS), leading to extensive cellular damage and eventual cell death either by apoptosis or necrosis. We evaluated the protective effects of cyanidin-3-O-beta-glucopyranoside (C-3-G) against UVA-induced apoptosis and DNA fragmentation in a human keratinocyte cell line (HaCaT). Treatment of HaCaT cells with C-3-G before UVA irradiation inhibited the formation of apoptotic cells (61%) and DNA fragmentation (54%). We also investigated antioxidant properties of C-3-G in HaCaT cells against ROS formation at apoptotic doses of UVA; C-3-G inhibited hydrogen peroxide (H2O2) release (an indicator of cellular ROS formation) after UVA irradiation. Further confirmation of the potential of C-3-G to counteract UVA-induced ROS formation comes from our demonstration of its ability to enhance the resistance of HaCaT cells to the apoptotic effects of both H2O2 and the superoxide anion (O2*-), two ROS involved in UVA-oxidative stress. Furthermore, in terms of Trolox Equivalent Antioxidant Activity, C-3-G treatment led to a greater increase in antioxidant activity in the membrane-enriched fraction than in the cytosol (55% vs 19%). The protective effects against UVA-induced ROS formation can be attributed to the higher membrane levels of C-3-G incorporation. These encouraging in vitro results support further research into C-3-G (and other anthocyanins) as novel agents for skin photoprotection.  相似文献   

17.
Thioridazine is a phenothiazine derivative that has been used as an antipsychotic; it rarely causes photosensitization. However, we noticed that this drug induced an erythematous reaction in a photopatch test. Six volunteers were patch tested with various concentrations of thioridazine and irradiated with a range of UVA doses, and the time courses of the color of and blood flow to the test sites were monitored. The free-radical metabolites of thioridazine generated under UVA irradiation and its effects on ascorbate radical formation were examined with an electron paramagnetic resonance (EPR) spectrometer in vitro. As a result, immediate erythema developed during UVA irradiation in most subjects when 1% thioridazine was applied for 48 h and irradiation doses were higher than 4 J cm(-2). Another peak of erythematous reaction was observed 8-12 h after irradiation. The in vitro examination detected an apparent EPR signal, which appeared when 2 mM thioridazine in air-saturated phosphate buffer was irradiated with UVA, whereas this reaction was attenuated under anaerobic conditions. The EPR signal of the ascorbate radical was augmented under both aerobic and anaerobic conditions. Thioridazine-derived oxidants and/or thioridazine radicals generated during UVA irradiation seem to play an important role in this unique phototoxic reaction.  相似文献   

18.
A new line of the Skh:HRII hairless pigmented mouse (black juvenile coat) is described which has been selectively bred for the capacity to respond consistently to simulated solar UV radiation with a continuous and strong tan. This mouse demonstrates a degree of protection from chronic UV-induced tumorigenesis when compared with the Skh:HRI hairless albino mouse, and has been used here to study the effect of induced melanogenesis on phototumorigenesis. Mice were irradiated for 10 weeks with incremental doses of simulated solar UV radiation (UVA + B) from a fluorescent tube source which induced tumours in 100% of albino mice and 93% of black mice by 200 days (minimally oedemal), or with 60% of this dose (sub-oedemal) which induced tumours in 85% of albino mice and 65% of black mice. Mice were also exposed to the UVA component of these radiation sources, obtained by window glass filtration. The effect of topical 5-methoxypsoralen (5-MOP) was examined, at either 0.003% with minimally oedemal UVA + B or its UVA component alone, or at 0.01% with sub-oedemal UVA + B or its UVA component alone, in both albino and black mice. The 5-MOP concentrations were selected as the maximum concentration which did not increase the erythema and oedema responses after a single exposure to minimally oedemal or sub-oedemal UVA + B. At 200 days, the tumorigenic response to sub-oedemal UVA + B was significantly increased by topical 5-MOP, to 100% in albinos and 93% in black mice. In contrast, tumorigenesis in response to minimally oedemal UVA + B was unaffected by topical 5-MOP. The UVA component alone of either irradiation regime was not tumorigenic under these conditions. When combined with topical 5-MOP, the UVA of minimally oedemal UVA + B became moderately tumorigenic, and resulted in a tumour incidence of 23% in albinos and 14.5% in black mice. However, the UVA component of sub-oedemal UVA + B, when combined with topical 5-MOP, was highly tumorigenic specifically in albino mice, inducing tumours in 93% of albino mice but in only 27% of black mice. Tan intensity resulting from minimally oedemal UVA + B was not enhanced by topical 5-MOP, and its UVA component combined with 5-MOP resulted in only a minimal tan. However, the tan intensity resulting from sub-oedemal UVA + B with topical 5-MOP was strongly increased, although its UVA component combined with 5-MOP did not produce a perceptible tan.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Abstract— The effects of mono- and bifunctional furocoumarins plus UVA radiation (PUVA and related treatments) on the human immunodeficiency virus-1 (HIV-1) promoter were studied using HeLa cells stably transfected with the chloramphenicol acetyl transferase gene under the control of the HIV-1 promoter. The experiments were performed with three psoralens (5-methoxypsoralen, 5-MOP; 8-methoxypsoralen, 8-MOP; and 4′-aminomethyl-4,8,5′-trimethyl-psoralen, AMT) and four angelicins (angelicin; 4,5′-diniethylangclicin, 4,5′-DMA; 6,4′-dimethylangelicin, 6,4′-DMA; and 4,6,4′-trimethylangelicin, TMA). The drugs alone and UVA radiation alone showed no erect on the HIV promoter. However, when the cells were incubated with the furocoumarins at 0.1–40 μg/mL and then irradiated. the HIV promoter was activated in distinct fluence ranges, i.e. (1) no promoter activity was discernible at low fluences (e.g. at 0.1 μg/mL of 8-MOP up to 100 kJ/m2), (2) as the fluence was increased, the promoter activity increased to reach a maximum (10–50-fold with respect to the unexposcd samples), and (3) as the fluence was further increased, the promoter activity decreased. Similar (although shifted on the fluence scale) pattcrns were observed with either > 340-nm UVA radiation or with UVA radiation contaminated with a small amount of UVB radiation (typical for PUVA lamps). The effective fluences were inversely related to the drug concentration. Experiments with 5-MOP and 8-MOP indicated reciprocity of the drug concentration and radiation hence. The HIV promoter response patterns were similar for monofunctional angelicins and bifunctional psoralens. This indicated that the furocoumarin-DNA crosslinks are not a prerequisite for the promoter activation and that the monoadducts suffice to elicit the HIV promoter response. The HIV promoter-activating effectiveness of diKcrent drugs correlated with their photosensitizing potential. Thus, among psoralens the effectiveness order was AMT >. 5-MOP >8-MOP, and among angelicins: TMA > 6,4′-DMA > 4,5′-DMA > angelicin. The ektiveness did not vary substantially for 5-MOP, 8-MOP, 4,5′-DMA, and 6,4′-DMA. The combined drug and UVA radiation doses were higher than those that elicit cellular responses or those that may be received by the human white blood cells during cxtracorporeal PUVA therapy (photopheresis).  相似文献   

20.
Evidence for the increased immunogenicity of mastocytoma cells (P815) treated with 8-methoxypsoralen (8-MOP) and long-wavelength ultraviolet radiation (UVA) is presented. A highly tumorigenic clone (P1) became much less tumorigenic (tum-) after repetitive phototreatments with 8-MOP (16 ng/mL) and UVA (1 J/cm2). The yield of tum- clones was proportional to the number of phototreatments. In a pilot study in which P1 cells were treated with three successive rounds of 8-MOP/UVA, one clone out of 73 was tum-. In a second series of experiments, the P1 cells were treated 10 times and 4 out of 100 clones were much less tumorigenic. When some of the tum-clones were administered intraperitoneally to DBA/2 mice, significant protection against challenge with the original P1 clone was observed. In addition, the transfer of immune cells from tum--treated mice allowed the transfer of resistance to other tum- clones to immunosuppressed mice (650 rad). These results are consistent with earlier literature showing the potent mutagen, N -methyl- N' -nitrosoguanidine, led to mutations in P1 that altered the expression of new surface antigens, which stimulated the murine immune system such that there was also cross recognition of shared antigens on untreated P1 cells used to challenge the immunized mice. The increased immunogenicity that resulted from the less mutagenic 8-MOP/UVA treatment may arise by a similar mechanism and may be responsible in part for the efficacy of 8-MOP/UVA photochemotherapy for the treatment of cutaneous T cell lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号