首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the adsorption of U(VI) from aqueous solution on Na-rectorite was studied as a function of various environmental conditions such as contact time, pH, ionic strength, soil humic acid (HA)/fulvic acid (FA), solid contents, and temperature under ambient conditions by using batch technique. The kinetic adsorption is fitted by the pseudo-second-order model very well. The adsorption of U(VI) on Na-rectorite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on U(VI) adsorption was found at low pH, whereas a negative effect was observed at high pH. The presence of HA/FA enhanced the U(VI) adsorption at low pH values, but reduced U(VI) adsorption at high pH. The thermodynamic parameters (ΔH 0, ΔS 0, and ΔG 0) were also calculated from the temperature dependent adsorption isotherms, and the results suggested that the adsorption of U(VI) on Na-rectorite was a spontaneous and endothermic process.  相似文献   

2.
MX-80 bentonite was characterized by XRD and FTIR in detail. The sorption of Th(IV) on MX-80 bentonite was studied as a function of pH and ionic strength in the presence and absence of humic acid/fulvic acid. The results indicate that the sorption of Th(IV) on MX-80 bentonite increases from 0 to 95% at pH range of 0–4, and then maintains high level with increasing pH values. The sorption of Th(IV) on bentonite decreases with increasing ionic strength. The diffusion layer model (DLM) is applied to simulate the sorption of Th(IV) with the aid of FITEQL 3.1 mode. The species of Th(IV) adsorbed on bare MX-80 bentonite are consisted of “strong” species o \textYOHTh4 + \equiv {\text{YOHTh}}^{4 + } at low pH and “weak” species o \textXOTh(OH)3 \equiv {\text{XOTh(OH)}}_{3} at pH > 4. On HA bound MX-80 bentonite, the species of Th(IV) adsorbed on HA-bentonite hybrids are mainly consisted of o \textYOThL3 \equiv {\text{YOThL}}_{3} and o \textXOThL1 \equiv {\text{XOThL}}_{1} at pH < 4, and o \textXOTh(OH)3 \equiv {\text{XOTh(OH)}}_{3} at pH > 4. Similar species of Th(IV) adsorbed on FA bound MX-80 bentonite are observed as on FA bound MX-80 bentonite. The sorption isotherm is simulated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models, respectively. The sorption mechanism of Th(IV) on MX-80 bentonite is discussed in detail.  相似文献   

3.
MX-80 bentonite is considered as one of the best backfill materials for high-level radioactive nuclear waste. Herein, the bentonite is characterized by using XRD and FTIR techniques. Sorption of radionickel to MX-80 bentonite in the presence/absence of humic acid (HA) or fulvic acid (FA) as a function of pH is investigated. The results indicate that the presence of HA or FA decreases the sorption of Ni2+ obviously. The different experimental processes do not affect the sorption of nickel to FA/HA bound bentonite. The sorption of Ni2+ on FA/HA-bound bentonite decreases with the increasing FA/HA content in the systems. The mechanism of nickel sorption is also discussed in detail.  相似文献   

4.
A novel hierarchically structured γ-MnO2 has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, hierarchically structured γ-MnO2 was used as adsorbent in radionuclide 63Ni(II) treatment, and showed an excellent ability. The effects of pH, ionic strength, temperature, humic acid (HA) and fulvic acid (FA) on the sorption of radionuclide 63Ni(II) to hierarchically structured γ-MnO2 have been investigated by using batch techniques. The results indicated that the sorption of 63Ni(II) on γ-MnO2 is obviously dependent on pH values but independent of ionic strength. The presence of HA/FA strongly enhances the sorption of 63Ni(II) on γ-MnO2 at low pH values, whereas reduces 63Ni(II) sorption at high pH values. The sorption of 63Ni(II) on γ-MnO2 is attributed to inner-sphere surface complexation rather than outer-sphere surface complexation or ion exchange. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) are also calculated from the temperature dependent sorption isotherms, and the results suggest that the sorption of 63Ni(II) on γ-MnO2 is a spontaneous and endothermic process.  相似文献   

5.
In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH < 8.0, whereas a negative effect was observed at pH > 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na+/H+ on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH.  相似文献   

6.
The sorption of 63Ni(II) from aqueous solution using ZSM-5 zeolite was investigated by batch technique under ambient conditions. ZSM-5 zeolite was characterized by point of zero net proton charge (PZNPC) titration. The sorption was investigated as a function of shaking time, pH, ionic strength, foreign ions, humic acid (HA), fulvic acid (FA) and temperature. The results indicate that the sorption of 63Ni(II) on ZSM-5 zeolite is strongly dependent on pH. The sorption is dependent on ionic strength at low pH, but independent of ionic strength at high pH values. The presence of HA/FA enhances 63Ni(II) sorption at low pH values, whereas reduces 63Ni(II) sorption at high pH values. The sorption isotherms are simulated by Langmuir model very well. The thermodynamic parameters (i.e., ∆H 0, ∆S 0 and ∆G 0) for the sorption of 63Ni(II) are determined from the temperature dependent sorption isotherms at 293.15, 313.15 and 333.15 K, respectively, and the results indicate that the sorption process of 63Ni(II) on ZSM-5 zeolite is spontaneous and endothermic.  相似文献   

7.
A novel γ-MnO2 hollow structure has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, γ-MnO2 hollow structure was used as adsorbent in radionuclide 60Co(II) treatment, and showed an excellent ability. The effect of pH, contact time, ionic strength, humic acid (HA)/fulvic acid (FA), and temperature was investigated using batch techniques. The results indicated that the sorption of 60Co(II) on γ-MnO2 was obviously dependent on pH values but independent of ionic strength. The presence of HA/FA enhanced the sorption of 60Co(II) on γ-MnO2 at low pH, whereas reduced 60Co(II) sorption on γ-MnO2 at high pH. The kinetic sorption of 60Co(II) on γ-MnO2 can be well fitted by the pseudo-second-order rate equation. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) were also calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption of 60Co(II) on γ-MnO2 was a spontaneous and endothermic process. The sorption of 60Co(II) on γ-MnO2 was attributed to surface complexation rather than ion exchange.  相似文献   

8.
The fate and transport of toxic metal ions and radionuclides in the environment is generally controlled by sorption reactions. The removal of 60Co(II) from wastewaters by MnO2 was studied as a function of various environmental parameters such as shaking time, pH, ionic strength, foreign ions, and humic substances under ambient conditions. The results indicated that the sorption of 60Co(II) on MnO2 was strongly dependent on pH and ionic strength. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of HA/FA enhances 60Co(II) sorption at low pH values, whereas reduces 60Co(II) sorption at high pH values. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 318.15 and 338.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on MnO2 was endothermic and spontaneous.  相似文献   

9.
In this paper, the sorption of Co(II) from aqueous solution to Ca-montmorillonite was studied under ambient conditions by using batch technique. The effects of contact time, solid content, pH, ionic strength and temperature on the sorption of Co(II) to Ca-montmorillonite was also investigated. The results indicated that the sorption of Co(II) was strongly dependent on pH values. The sorption was dependent on ionic strength at low pH values, but independent of ionic strength at high pH values. Outer-sphere surface complexes were formed on the surface of Ca-montmorillonite at low pH values, whereas inner-sphere surface complexes were formed at high pH values. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms of Co(II) at three different temperatures. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption reaction of Co(II) to Ca-montmorillonite was an endothermic and spontaneous process. The high sorption capacity of Co(II) on Ca-montmorillonite suggests that the Ca-montmorillonite is a suitable material for the preconcentration and solidification of radiocobalt from aqueous solutions.  相似文献   

10.
MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(Ⅱ) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(Ⅱ) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(Ⅱ) on MX-80 bentonite was mainly dominated by surface complexation...  相似文献   

11.
In this work, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR to determine its chemical functional groups. A series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature on the sorption behavior of HAP towards radionuclide 109Cd(II). The results indicated that the sorption of 109Cd(II) on HAP was strongly dependent on pH and ionic strength. A positive effect of FA on 109Cd(II) sorption was found at pH <7.0, whereas a negative effect was observed at pH >7.0. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH0, ΔS0 and ΔG0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 109Cd(II) on HAP was spontaneous and endothermic. At low pH, the sorption of 109Cd(II) was dominated by outer-sphere surface complexation and ion exchange on HAP surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that HAP has good potentialities for cost-effective treatments of 109Cd(II)-contaminated wastewaters.  相似文献   

12.
Humic substances have attracted great interest in the investigation of metal ion behavior in the environment because of their special properties. Sorption and complexation of Pb2+ on MX-80 bentonite, LA bentonite, alumina and silica as a function of pH were studied in the presence and absence of fulvic acid (FA). The experiments were carried out in 0.01M and 0.001M NaNO3 solutions under ambient conditions. The results indicate that sorption of Pb2+ on the solid samples is strongly dependent on pH and FA. The sorption of Pb2+ is not influenced drastically by ionic strength. The nature of minerals/oxides, nature of humic substances and the composition of the solution are important factors in the behavior of metal ions in the environment. The results also indicate that FA has a positive effect on Pb2+ sorption at low and a negative effect at high pH values, and the results are discussed in the comparative complexation between FA-Pb2+ and Pb2+-minerals.  相似文献   

13.

Herein, we used biochar pyrolyzed from rice straw to adsorb uranium (U) from aqueous solutions. The adsorption of U(VI) on biochar was strongly dependent on pH but independent on ionic strength. HA/FA enhanced the sorption at pH <6.8 while inhibited the sorption at pH >6.8. The sorption reached equilibrium within 3 h, which was not mediated by pH. The adsorption process was spontaneous and endothermic, and enhanced at higher temperature. However, the influence of temperature was negligible at low initial U(VI) concentrations. Therefore, biochar derived from rice straw may be a promising adsorbent for the removal of U(VI).

  相似文献   

14.
The sorption of 60Co(II) on γ-Al2O3 was conducted under various conditions, i.e., contact time, adsorbent content, pH, ionic strength, foreign ions, humic acid (HA), and temperature. Results of sorption data analysis indicated that the sorption of 60Co(II) on γ-Al2O3 was strongly dependent on pH and ionic strength. At low pH the sorption was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of different cation ions influenced 60Co(II) sorption, while the presence of different anion ions had no obvious influences on 60Co(II) sorption. The presence of HA decreased the sorption of 60Co(II) on γ-Al2O3. The sorption isotherms were simulated well with the Langmuir model. The thermodynamic parameters (ΔH 0 , ΔS 0 and ΔG 0 ) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 60Co(II) on γ-Al2O3 was an endothermic and spontaneous process. Experimental results indicated that the low cost material was a suitable material in the preconcentration of 60Co(II) from large volumes of aqueous solutions.  相似文献   

15.
This work contributed to the adsorption of radiocobalt on goethite as a function of contact time, pH, ionic strength and foreign ions in the absence and presence of fulvic acid (FA) under ambient conditions. The results indicated that adsorption of Co(II) was dependent on ionic strength and foreign ions at low pH values (pH < 7.8), and independent of ionic strength and foreign ions at high pH values (pH > 7.8). Outer-sphere surface complexation and/or ion exchange were the main mechanisms of Co(II) adsorption on goethite at low pH values, whereas inner-sphere surface complexation was the main adsorption mechanism at high pH values. The presence of FA enhanced Co(II) adsorption at low pH values, but reduced Co(II) adsorption at high pH values. The thermodynamic data (ΔH 0, ΔS 0, ΔG 0) were calculated from the temperature dependent adsorption isotherms, and the results suggested that adsorption process of Co(II) on goethite was spontaneous and endothermic. The results are crucial to understand the physicochemical behavior of Co(II) in the nature environment.  相似文献   

16.
The sorption of Cd(II) from aqueous solution on γ-Al2O3 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on γ-Al2O3 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on γ-Al2O3 was an spontaneous and endothermic process.  相似文献   

17.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

18.
The sorption of radiocadmium on Ca-montmorillonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results demonstrated that the sorption of Cd(II) was dependent on ionic strength at pH < 9, and was independent of ionic strength at pH > 9. Outer-sphere surface complexation and/or ion exchange were the main mechanism of Cd(II) sorption on Ca-montmorillonite at low pH, whereas the sorption at high pH was mainly dominated via inner-sphere surface complexation. The sorption of Cd(II) on Ca-montmorillonite was dependent on foreign ions at low pH values, but was independent of foreign ions at high pH values. A positive effect of HA/FA on Cd(II) sorption was found at low pH values, whereas a negative effect was observed at high pH values. The thermodynamic parameters (i.e., ??H 0, ??S 0, ??G 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption process of Cd(II) on Ca-montmorillonite was spontaneous and endothermic.  相似文献   

19.
Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

20.
Uranium is one of the most hazardous heavy metal due to its long half-life radioactivity, high toxicity and mobility as aqueous uranyl ion (UO2 2+) under ordinary environmental conditions. Herein, amino functionalized SBA-15 (APSS) was developed as a rapid and efficient sorbent for removal of U(VI) from the environment. The APSS sample was synthesized by grafting method and was characterized by SEM, NMR, SAXS, and N2 sorption/desorption isothermal experiments. The sorption of U(VI) by APSS was investigated under different conditions of pH, contact time, initial U(VI) concentration, ionic strength and solid–liquid ratio. The results show that the sorption of U(VI) by APSS is strongly dependent on pH but independent of ionic strength and solid–liquid ratios (m/V). The sorption is ultrafast with an equilibrium time of less than 30 min, and the sorption capacity is as large as 409 mg/g at pH 5.3 ± 0.1. Besides, the U(VI) sorption by APSS from extremely diluted solution and the desorption of U(VI) from APSS were also studied. It is found that 100 mg of APSS can almost completely remove the U(VI) ions from 4 L aqueous solution with the U(VI) concentration as low as 4.2 ppb and the sorbed U(VI) can be completely desorbed by 0.1 mol/L nitric acid. The results strongly reveal the high performance of the APSS material in the removal and preconcentration of U(VI) from the aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号