首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explicitly correlated MBPT-R12 and coupled cluster [up to CCSD(T)-R12] methods have been used in calculations of various (vibrationless) electrical properties for the LiH molecule, including the dipole and quadrupole moments, dipole and quadrupole polarizability tensors, dipole hyperpolarizability tensors, and the second dipole hyperpolarizability tensors. Generally, with extension of the basis set the R12 method did not lead to faster convergence for the calculated properties towards the basis limit. Nevertheless, R12 calculations serve as useful indicators to judge the reliability of the results, and substantially help in determining the accuracy. Results obtained with the 11s8p6d5f/9s8p6d5f basis and CCSD(T)-R12 calculated within this work should be close to the basis set limit. Received: 8 June 1998 / Accepted: 23 July 1998 / Published online: 7 October 1998  相似文献   

2.
The phenyl cation is known to have two low-energy minima, corresponding to 1 A 1 and 3 B 1 states, the first of which is more stable by ca. 25 kcal/mol. The minimum energy crossing point between these two surfaces, located at various levels including a hybrid method first described here, lies just above the minimum of the triplet, 0.12 kcal/mol at the CCSD(T)/cc-pVDZ//B3LYP/SV level, and there is significant spin-orbit coupling between the surfaces at this point. On the basis of these results, the lifetime of the triplet is expected to be very short. Received: 24 October 1997 / Accepted: 25 November 1997  相似文献   

3.
The flexibility of the five-membered ring in tetrahydrofuran was investigated using quantum mechanical methods involving density functional, Hartree-Fock, and many-body perturbation theory (MP2, MP4) calculations. We found that motion along the pseudorotational path of tetrahydrofuran is nearly free. The 0.1 kcal/mol energy barrier for pseudorotation, calculated at the highest MP4(SDQ)/6-311++G(2d,p)//MP2/6-311++G(2d,p) level of theory, agrees well with the experimental value of 0.16±0.03 kcal/mol. Similar results were obtained with the S-VWN, B3-LYP and B-LYP density functional calculations using the 6-31G(d) set of atomic orbitals. Also the density functional dipole moments and geometries were in good agreement with both the MP2 and experimental benchmarks. However, all density functional methods that utilized the default integration grid in the Gaussian 94 program were found to provide false stationary points of the C 1 symmetry near the pseudorotational angle of 100°. These stationary points disappeared when a denser spherical-product grid was used. Overall, the hybrid B3-LYP functional was found to be the most promising quantum mechanical method for the modeling of biomolecules containing the furanose ring. Received: 17 June 1997 / Accepted: 20 November 1997  相似文献   

4.
Correlation-consistent basis sets are developed for the Ti atom. The polarization functions are optimized for the average of the 3F and 5F states. One series of correlation-consistent basis sets is for 3d and 4s correlation, while the second series includes 3s and 3p correlation as well as 3d and 4s correlation. These basis sets are tested using the Ti 3F–5F separation and the dissociation energies of TiCl X4Φ, TiH X4Φ, and TiH+ X3Φ. The CCSD(T) complete basis set limit values are determined by extrapolation. The Douglas–Kroll approach is used to compute the scalar relativistic effect. Spin-orbit effects are taken from experiment and/or are computed at the CASSCF level. The Ti 3F–5F separation is in excellent agreement with experiment, while the TiCl, TiH, and TiH+ bond energies are in good agreement with experiment. Extrapolation with the valence basis set is consistent with other atoms, while including 3s and 3p correlation appears to make extrapolation more difficult. Received: 20 January 1999 / Accepted: 26 February 1999 / Published online: 7 June 1999  相似文献   

5.
The gallium monohydride (GaH) molecule and its positive ion were theoretically investigated by abinitio molecular orbital calculations with a flexible basis set including g-type functions on the Ga atom. Electron correlations among not only the valence electrons of Ga 4s4p and H 1s but also the semi-core electrons of Ga 3d were incorporated by a size-consistent scheme of the coupled pair approximation. The contribution of the 3d electron correlation was found to be considerable on spectroscopic constants of both GaH and GaH+, especially on the bond length. Received: 25 July 1997 / Accepted: 13 November 1997  相似文献   

6.
Generally contracted basis sets for the first row transition metal atoms Sc-Zn have been constructed using the atomic natural orbital (ANO) approach, with modifications for allowing symmetry breaking and state averaging. The ANOs are constructed by averaging over the three electronic configurationsd n ,d n–1 s, andd n–2 s 2 for the neutral atom as well as the ground state for the cation and the ground state atom in an external electric field. The primitive sets are 21s15p10d6f4g. Contraction to 6s5p4d3f2g yields results that are virtually identical to those obtained with the corresponding uncontracted basis sets for the atomic properties, which they have been designed to reproduce. Slightly larger deviations are obtained with the 5s4p3d2f1g for the polarizability, while energetic properties still have only small errors. The design objective has been to describe the ionization potential, the polarizability and the valence spectrum as accurately as possible. The result is a set of well-balanced basis sets for molecular calculations, which can be used together with basis sets of the same quality for the first and second row atoms.  相似文献   

7.
8.
Herein, the thermochemical properties of five-membered rings heterocycles were studied employing the CCSD(T) methodology coupled with the correlation consistent basis sets and including corrections for relativistic and core-valence effects as well as anharmonicities of the potentials. For pyrrole, furan, imidazole, pyrazole, 1H-1,2,4-triazole, and 1H-tetrazole, the mean absolute deviation (MAD) of the \Updelta \textH\textf, 2 9 8\texto \Updelta {\text{H}}_{{{\text{f}}, 2 9 8}}^{\text{o}} , computed at the CCSD(T) level, is 0.5 kcal/mol with respect to the experimental values. In the case of 1H-1,2,3-triazole, 2H-1,2,3-triazole, 4H-1,2,3-triazole, 4H-1,2,4-triazole, 2H-tetrazole, and pentazole, we propose the following \Updelta \textH\textf, 2 9 8\texto \Updelta {\text{H}}_{{{\text{f}}, 2 9 8}}^{\text{o}} : 62.6, 59.2, 85.0, 54.2, 77.7, and 107.5 kcal/mol, respectively. For thiophene, we revisit our previous result and propose a value of 26.0 kcal/mol. The theoretical estimations were used to study the performance of the M06-2X and B2PLYP functionals. Also, the convergence toward the complete basis set limit (CBS) was analyzed. M06-2X did not show a smooth convergence toward the CBS limit. Particularly, for the cc-pVTZ and cc-pVQZ basis sets, some problems were detected. Yet, along the cc-pVQZ, cc-pV5Z, and cc-pV6Z basis sets, the TAE smoothly decreased. The diminution of the TAE upon increase in basis set was not expected because the opposite behavior is more frequently observed. The MAD of the total atomization energies determined at the M06-2X level was 0.42 kcal/mol, with respect to the CCSD(T) results. In the case of the double hybrid B2PLYP functional, a smooth convergence toward the CBS limit was detected, even though the performance seriously degradated when the basis set was increased. At the CBS limit, the MAD with respect to the CCSD(T) TAEs was 8.26 kcal/mol.  相似文献   

9.
A theoretical study of the structure, charge distribution, rotational barrier and fundamental vibrations of anhydrous betaine (CH3)3NCH2COO (trimethylglycine) was carried out and compared with available experimental data. Calculations were carried out at HF, MP2 and B3LYP levels using a 6-31+G(d,p) basis set. The calculated rotational barrier of the betaine carboxylic group is 40.5 kJ/mol at the MP4(SDQ)/6-311G(d,p)//HF/6-31+G(d,p) level of theory. The rotation of the carboxylic group changes the molecule from a highly symmetric (C s ) conformation into a twisted conformation resulting in shortening of the molecule by about 50 pm. Natural population analysis (NPA) indicates intramolecular interaction between the carboxylic oxygen and the nearest methyl hydrogens resulting in internal hydrogen bonding. MP4(SDQ)/6-311G(d,p) single-point NPA calculations on a betaine monohydrate model taken from the X-ray geometry show an expected weakening in the internal hydrogen bond. Calculations explain why betaine preferentially crystallizes in high local C s symmetry. Received: 24 March 1998 / Accepted: 3 September 1998 / Published online: 7 December 1998  相似文献   

10.
11.
Using systematic sequences of the newly developed correlation consistent core-valence basis sets from cc-pCVDZ through cc-pCV6Z, the spectroscopic constants of the homonuclear diatomic molecules containing first row atoms, B–F, are calculated both with and without inclusion of 1s correlation. Internally contracted multireference configuration interaction (IC-MRCI) and singles and doubles coupled cluster (CCSD) theory with a perturbational estimate of connected triple excitations, CCSD(T), have been investigated. By exploiting the convergence of the correlation consistent basis sets, complete basis set (CBS) limits have been estimated for total energies, dissociation energies, equilibrium geometries, and harmonic frequencies. Based on the estimated CBS limits the effects of 1s correlation on D e (kcal/mol), r e (?), and ω e (cm−1) are: +1.1, −0.0070, +10 for B2; +1.5, −0.0040, +13 for C2; +0.9, −0.0020, +9 for N2; +0.3, −0.0020, +6 for O2; and −0.1, −0.0015, +1 for F2. Received: 20 January 1997 / Accepted: 6 May 1997  相似文献   

12.
Several zerovalent lanthanide bis(arene)-sandwich complexes, Ln(η6-C6H6)2, Ln = La, Ce, Eu, Gd and Lu, have been studied by means of density functional theory. The calculated geometries are in good agreement with experiment. The calculated dissociation energies of the bond Ln-(η6-C6H6) may be considerably underestimated, but they correctly reveal the variation regularity. The bonding in these molecules can be described in terms of a relatively weak π-electron donation from benzene to Ln and a stronger electron back-donation from Ln 5d to the benzene π* orbitals. During bond formation, there is electron promotion from Ln 6s to 5d instead of from 4f to 5d, in opposition to the proposal of Anderson et al. The relativistic effect only slightly influences the molecular geometry, but decreases the bonding energy considerably through lowering the Ln 6s level and raising the 5d level. It enhances the trend of the bonding energy to decrease along the lanthanide series. Received: 22 June 1998 / Accepted: 9 September 1998 / Published online: 17 December 1998  相似文献   

13.
Summary The laboratory study of phosphorus clusters by laser-based mass spectrometric methods indicates, tentatively, that P + 21 may be special. A plausible interpretation might place a P+ ion interior to a dodecahedral P20 molecule.Ab initio quantum mechanical methods have been applied to the P20 molecule using contracted gaussian basis sets as large as (9s 6p 4d 3f) on each phosphorus atom. At the highest level of theory, dodecahedral P20 is predicted to lie 23 kcal/mol above five separated P4 molecules.Dedicated to Professor Werner Kutzelnigg  相似文献   

14.
The [H,S,Cl] potential-energy surface has been investigated at the self-consistent field (SCF), complete active space self-consistent field (CASSCF), second-order M?ller–Plesset, coupled-cluster single-double and perturbative triple excitation, [CCSD(T)]/6-31G(d,p), 6-31G(2df,2pd), and correlation-consistent polarized valence triple zeta (cc-pVTZ) levels of theory. CCSD(T)/ cc-pVTZ results predict a very stable HSCl species, an isomer HClS, 51.84 kcal/mol higher in energy, and a transition state 57.68 kcal/mol above HSCl. Independent of the level of theory, results with the smaller 6-31G(d,p) basis set turned out to be poor, especially for HClS. Vibrational analysis indicates that both species can be easily differentiated if isolated. Bonding differences between these molecules are illustrated by contour plots of valence orbitals. Viewed classically, bonding in HClS involves a dative bond. Transition-state rate constants, and equilibrium constants for the HSCl ↔ HClS isomerization have been estimated for various temperatures (200–1000 K). At 298.15 K, the forward rate is predicted to be 7.95 × 10−29 s−1, and the equilibrium constant to be 2.31 × 10−38. Tunneling corrections vary from 1.57 at 298.15 K to 1.05 at 1000 K. Activation energies have been obtained by a two-points linear fit to the Arrhenius equation. Received: 7 May 1999 / Accepted: 22 July 1999 / Published online: 4 October 1999  相似文献   

15.
The effect of the parent basis set on the basis set superposition error caused by bond functions is investigated systematically. An important difference between BSSE at the SCF and correlated levels is pointed out. Three new basis sets are defined, denoted 6-311 + G(d,p)B, 6-311 + G(2d,p)B, and 6-311 + G(2df,p)B. BSSE for the first-row hydrides seems to increase uniformly with increasing atomic number of the central atom. Expansion of the valence part of the basis set from 6-31G to 6-311G, as well as adding f functions, has a significant effect on the BSSE. Additional BSSEs incurred by bond functions are less than or equal to 1 kcal/mol for the 6-311 + G(2df,p)B basis set. For the dissociation energies of the first-row hydride species, agreement with experiment within only a few kcal/mol can be obtained even without resorting to isogyric reaction cycles. For high-quality calculations, adding bond functions seems to have definite advantages over expanding the polarization space beyond the [2d1f] level.  相似文献   

16.
We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes – SOPPA(CCSD). Attention is given to the effect of the so-called W 4 term, which has not been included in previous SOPPA spin-spin coupling constant studies of these molecules. Large sets of Gaussian basis functions, optimized for the calculation of indirect nuclear spin-spin coupling constants, were used instead of the in general rather small basis sets used in previous studies. We find that for nearly all couplings the SOPPA(CCSD) method performs better than SOPPA. Received: 6 July 1998 / Accepted: 8 September 1998 / Published online: 23 November 1998  相似文献   

17.
Summary Multi-reference CI methods have been applied to determine the dissociation energy and structure of thecis-N2O2 molecule. The convergence of the theoretical result has been checked with respect to a systematic expansion of the one-electron basis set and the multi-reference CI wave function. The best calculated value, 13.8 kJ/mol, is in agreement with the experimental value, 12.2 kJ/mol. It has been obtained with an extended ANO-type basis set [6s5p3d2f], including the effect of the basis set superposition error (BSSE) in the geometry optimization, and additional effects, such as the electron correlation of core electrons and relativistic corrections, using the average coupled pair functional (ACPF) approach. The optimal geometry computed at this level was found to be:r(NN)=2.284 Å,r(NO)=1.149 Å, and s5p3d2f] basis set, the BSSE was found to be 2 kJ/mol.  相似文献   

18.
The (14s11p5d) primitive basis set of Dunning for the third-row main group atoms Ga-Kr has been contracted [6s4p1d]. The core functions have been relatively highly contracted while those which represent the valence region have been left uncontracted to maintain flexibility. Calculations with the [6s4p1d] contraction are reported for a variety of molecules involving third-row atoms. This basis set is found to satisfactorily reproduce experimental properties such as geometric configurations, dipole moments, and vibrational frequencies for a range of molecules. Comparisons are made with the performance of the uncontracted basis set. Polarization functions for the contracted basis set are reported and performance of the basis set with and without polarization functions is examined. A relaxation of the [6s4p1d] contraction to [9s6p2d] for higher level evergy calculations is also presented.  相似文献   

19.
The spin‐forbidden reaction mechanism of Ta (4F, 5d36s2) with CH3CN, on two different potential surfaces (PESs) has been investigated at the B3LYP, MP2, and CCSD level of theory. Crossing points between the PESs are located using different methods, and possible spin inversion processes are discussed by means of spin‐orbit coupling calculations. As a result, the reaction system will change its spin multiplicities near this crossing seam, leading to a significant decrease in the barrier of 2‐4TS3 from 24.17 to 5.36 kcal/mol, which makes the reaction access to a lower energy pathway and accelerate the reaction rate. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Density functional theory transition structures were located for three concerted [6 + 4] cycloaddition reactions involving cis-hexatriene and butadiene, cyclopentadiene and cycloheptatriene, and cyclopentadiene and tropone. Geometries, energies, and entropies were computed at the Becke3LYP/6-31G* level. The activation energy of the concerted [6 + 4] cycloaddition of hexatriene and butadiene is 33.3 kcal/mol, about 8 kcal/mol above the activation energy of the butadiene plus ethylene [4 + 2] cycloaddition. The endo concerted [6 + 4] transition state is 1.1 kcal/mol higher than the exo. The [6 + 4] reaction of cyclopentadiene and cycloheptatriene has a barrier of 25.9 kcal/mol, while the cyclopentadiene–tropone barrier drops to 20.7 kcal/mol. Received: 3 December 1998 / Accepted: 18 February 1999 / Published online: 7 June 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号