首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
作大范围空间运动柔性梁的刚-柔耦合动力学   总被引:1,自引:4,他引:1       下载免费PDF全文
刘锦阳  李彬  洪嘉振 《力学学报》2006,38(2):276-282
研究带中心刚体的作大范围空间运动梁的刚-柔耦合动力学问题.从精确的应变-位移关系式出发,在动力学变分方程中,考虑了横截面转动的惯性力偶和与扭转变形有关的弹性力的虚功率,用速度变分原理建立了考虑几何非线性的空间梁的刚-柔耦合动力学方程,用有限元法进行离散.通过对空间梁系统的数值仿真研究扭转变形和截面转动惯量对系统动力学性态的影响.  相似文献   

2.
平动弹性梁的刚-柔耦合动力学   总被引:3,自引:0,他引:3  
蒋丽忠  洪嘉振 《力学季刊》2002,23(4):450-454
本文建立了作大范围平动弹性梁的刚-柔耦合动力学控制方程。分析了大范围平动对弹性梁变形运动动力学性质的影响,发现了大范围平动与变形运动之间的耦合动力学与大范围转动与变形运动之间的耦合动力学存在显著的差异。大范围平动使弹性梁的刚度降低,同时使系统阻尼增加;而大范围转动使弹性梁的刚度增加,同时使系统产生了能量转换的陀螺效应。因此,柔性多体系统刚-柔耦合动力建模中必须包括大范围平动与柔性体变形运动之间的耦合动力学效应。  相似文献   

3.
空间柔性结构受太阳热流冲击而诱发的振动是导致航天器失效的典型模式之一,准确预测结构热致振动的响应及稳定性是卫星设计的基础.针对常见的中心舱体与附属薄壁杆件组成的空间结构,提出了考虑刚-柔耦合、耦合热弹性和耦合热-结构三重耦合效应的热致振动分析理论模型.其中,刚-柔耦合是指舱体姿态角、顶端集中质量转动与柔性附件运动的耦合;耦合热弹性是指应变率与温度场的耦合;耦合热-结构是指舱体转动及结构变形与薄壁杆件吸收太阳热流的耦合.基于热弹性理论和Lagrange方程,推导了传热和运动的耦合方程;采用La-place变换方法并使用Routh-Hurwitz稳定判据推导了稳定性边界方程.结果表明,该模型能够更为准确的给出热致振动响应及稳定性预测.  相似文献   

4.
刚-柔耦合动力学系统的建模理论研究   总被引:16,自引:3,他引:16       下载免费PDF全文
刘锦阳  洪嘉振 《力学学报》2002,34(3):408-415
刚-柔耦合动力学系统的传统的混合坐标方法是零次近似方法,在建模过程中,直接套用的结构动力学的小变形假设,忽略了变形位移的高次耦合变形量.本文对柔性梁建立较零次近似更精确的高次耦合动力学模型,从连续介质力学理论出发,在变形位移中,计及横向位移引起的轴向缩短,导出变形位移的二次耦合量.用一致质量有限元方法对梁进行离散,基于Jourdain速度变分原理导出大范围运动为自由的柔性梁的刚-柔耦合动力学方程.计算了柔性重力摆的角速度和摆端点的横向变形,揭示零次近似模型和耦合模型的刚-柔耦合动力学性质的根本差异.  相似文献   

5.
计及热应变的空间曲梁的刚-柔耦合动力学   总被引:2,自引:1,他引:1       下载免费PDF全文
研究带中心刚体的作大范围运动的空间曲梁的刚-柔耦合动力学.结合混合坐标法和绝对坐标法的特点,取与中心刚体大范围运动有关的变量和柔性梁各单元节点相对中心刚体连体基的位移和斜率作为广义坐标,建立了一种新的柔性梁的刚柔耦合模型.基于精确的应变和位移的关系式,根据Jourdian速度变分原理,建立了带中心刚体柔性曲梁的有限元离散的动力学方程.数值对比了空间曲梁系统和空间直梁系统的刚柔耦合动力学性质,用能量守恒规律验证了文中曲梁模型的合理性.在此基础上,在应变能中计及热应变,研究温度增高引起的曲梁的热膨胀对系统的动力学性态的影响.  相似文献   

6.
柔性体的刚-柔耦合动力学分析   总被引:17,自引:0,他引:17  
对柔性梁的刚-柔耦合动力学特性进行分析.从连续介质力学理论出发,在纵向变形位移中计及了耦合变形量,用Jourdain速度变分原理导出了柔性梁的刚-柔耦合动力学方程.定量地研究了非惯性系下柔性梁的动力学性质,比较了在不同转速下零次近似模型和耦合模型的振动频率的差异.为了确定零次近似模型的适用范围,引入与转速和基点加速度有关的相关系数,提出了零次近似模型的适用判据为相关系数小于0.1.在此基础上,进一步研究在大范围运动是自由的情况下柔性梁的大范围运动和变形运动的耦合机理,计算了带平动刚体的柔性梁的大范围运动规律,揭示零次近似模型和耦合模型的刚-柔耦合动力学性质的根本差异.  相似文献   

7.
研究带中心刚体的Timoshenko梁的刚-柔耦合动力学问题。从力学的基本原理出发,基于Timoshenko梁假设,用虚功原理建立了带中心刚体的柔性梁的刚-柔耦合动力学方程。仿真计算结果表明,随着梁的惯量矩和横截面积比逐渐增大,剪切变形对梁的刚-柔耦合动力学性态产生了一定的影响。此外,本文还对不计剪切变形的Euler-Bernoulli梁假设的适用性进行了研究。  相似文献   

8.
作大范围运动弹性梁的动力刚化分析   总被引:25,自引:4,他引:25  
刚体大范围运动与弹性梁的变形运动的相互耦合将产生动力刚化现象,在经典的动力学理论中无法解释这种现象。本文给出了该系统的运动描述方法,利用Hamilton变分原理建立了动力学控制方程,利用Garlerkin模态截断研究了产生动力刚化的原因及其动力学性质,从本质上解释了学者们多年来一直在研究的动力硬化现象,最后用数值模拟验证了理论的正确性。本文所得结论有益于柔性多体系统动力学的发展。  相似文献   

9.
作大运动弹性薄板中的几何非线性与耦合变形   总被引:8,自引:0,他引:8       下载免费PDF全文
蒋丽忠  洪嘉振 《力学学报》1999,31(2):243-249
导出作大范围刚体运动弹性薄板包括了几何非线性和中面变形之间的相互耦合(耦合变形)的动力学控制方程.分析了几何非线性和耦合变形各自对系统动力学性质的影响,得到了在传统方法上只考虑几何非线性,系统将通过同宿轨分岔过渡到混沌运动;若在传统方法上考虑耦合变形,系统稳定且数值解收敛,与实际情形相符.  相似文献   

10.
耦合变形对大范围运动柔性梁动力学建模的影响   总被引:1,自引:0,他引:1  
柔性梁在作大范围空间运动时,产生弯曲和扭转变形,这些变形的相互耦合形成了梁在纵向以及横向位移的二次耦合变量。本文考虑了变形产生的几何非线性效应对运动柔性梁的影响,在其三个方向的变形中均考虑了二次耦合变量,利用弹性旋转矩阵建立了准确的几何非线性变形方程,通过Lagrange方程导出系统的动力学方程。仿真结果表明,在大范围运动情况下,仅在纵向变形中计及了变形二次耦合量的一次动力学模型,与考虑了完全几何非线性变形的模型具有一定的差异。  相似文献   

11.
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The “coupling matrix library” and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams. The project supported by the National Natural Science Foundation of China (No. 19832040).  相似文献   

12.
基于经典层合板理论建立了大范围运动复合材料板的动力学方程,考虑了传统建模方法忽略的二次耦合变形量。采用有限元法对复合材料板进行离散,利用Lagrange方法推导了大范围运动复合材料板的动力学方程。通过编制matlab程序计算了带中心刚体的旋转复合材料板的变形,将得到的结果分别与不计耦合变形量的传统方法的计算结果进行比较,随着转速的提高,本文方法收敛,而传统方法趋于发散。研究了铺层角度对作大范围运动复合材料板变形影响以及复合材料板和各向同性板在经历相同运动时角点最大变形的差异。  相似文献   

13.
A new simplified structural model and its governing equations for beams on elastic foundations with elastic coupling are proposed. This modeling system is simple but appropriate for the initial structural design of large-scale submerged floating-beam structures moored by tension legs spaced at uniform interval along the beam. The model is actually for beam on discrete elastic supports rather than on continuous elastic foundations. Therefore, the governing equations are based on finite difference calculus and solutions for beams on discrete elastic supports with elasticity coupling are also proposed. To clarify the applicability limit of the proposed model, the equivalence between a beam on discrete elastic supports and that on continuous elastic foundation is investigated by comparisons of characteristic solutions.  相似文献   

14.
The conditions that give rise to non-periodic motions of a Jeffcott rotor in the presence of non-linear elastic restoring forces are examined. It is well known that non-periodic behaviours that characterise the dynamics of a rotor are fundamentally a consequence of two aspects: the non-linearity of the hydrodynamic forces in the lubricated bearings of the supports and the non-linearity that affects the elastic restoring forces in the shaft of the rotor. In the present research the analysis was restricted to the influence of the non-linearity that characterises the elastic restoring forces in the shaft, adopting a system that was selected the simplest as possible. This system was represented by a Jeffcott rotor with a shaft of mass that was negligible respect to the one of the disk, and supported with ball bearings. In order to check in a straightforward manner the non-linearity of the system and to confirm the results obtained through theoretical analysis, an investigation was carried out using an experimental model consisting of a rotating disk fitted in the middle of a piano wire pulled taut at its ends but leaving the tension adjustable. The adopted length/diameter ratio was high enough to assume the wire itself was perfectly flexible while its mass was negligible compared to that of the disk. Under such hypotheses the motion of the disk centre can be expressed by means of two ordinary, non-linear and coupled differential equations. The conditions that make the above motion non-periodic or chaotic were found through numerical integration of the equations of motion. A number of numerical trials were carried out using a 4th order Runge-Kutta routine with adaptive stepsize control. This procedure made it possible to plot the trajectories of the disk centre and the phase diagrams of the component motions, taken along two orthogonal coordinate axes, with their projections of the Poincaré sections. On the basis of the theoretical results obtained, the conditions that give rise to non-periodic motions of the experimental rotor were identified.  相似文献   

15.
A brief review of the literatures on the titled subject is given. A set of wave equations, taking the inertial coupling effect between soil skeleton and pore water into account, are established for saturated soils. The preliminary analysis shows that the nature of wave propagation is mainly influenced by permeability coefficient,k. There are three types of waves, two (P-and S-wave) propagating through soil skeleton and one(P-wave) through pore water. For a soil with large value ofk, compression wave velocity through pore water will be greater than that through single-phased water, and ask→∞, the former could be times as great as the latter. For a soil with extremely low permeability, the compression wave velocity could be either less or greater than that through single-phased water, depending on the rigidity of the soil passing through. Some phenomena observed from tests presented in the literature may be reasonably explained by the proposed theory herein, and thus more reliable parameters of soil could be obtained from wave velocity measurements. Further studies on this subject are still needed. This paper is a part of the dissertation of the first author for the Ph.D. degree, the second author is his advisor.  相似文献   

16.
The steady motions of an axially symmetric rigid satellite orbiting a fixed spherically symmetric rigid body are considered in this paper. Based on a model for the dynamics of the satellite which incorporates the classical approximation for the gravitational potential and includes the attitude-orbit coupling, the bifurcations and non-linear stability of the steady motions of the satellite are discussed. These results extend earlier works on this problem by Likins, Pringle, Rumyantsev, Stepanov, and Thomson, by showing how the motions found by these authors are interrelated, and how several of them are physically unrealistic because their orbital radii are too small.  相似文献   

17.
The nonlinear dynamics of a clamped-clamped/sliding inextensional elastic beam subject to a harmonic axial load is investigated. The Galerkin method is used on the coupled bending-bending-torsional nonlinear equations with inertial and geometric nonlinearities and the resulting two second order ordinary differential equations are studied by the method of multiple time seales and by direct numerical integration. The amplitude equations are analyzed for steady and Hopf bifurcations. Depending on the amplitude of excitation, the damping and the ratio of principal flexural rigidities, various qualitatively distinct frequency response diagrams are uncovered and limit cycles and chaotic motions are found. In the truncated two-degree-of-freedom system the transition from periodic to chaotic amplitude-modulated motions is via the process of torus doubling and subsequent destruction of the torus.  相似文献   

18.
The equations describing the interaction of an electromagnetic sensitive elastic solid with electric and magnetic fields under finite deformations are summarized, both for time-independent deformations and, in the non-relativistic approximation, time-dependent motions. The equations are given in both Eulerian and Lagrangian form, and the latter are then used to derive the equations governing incremental motions and electromagnetic fields superimposed on a configuration with a known static finite deformation and time-independent electromagnetic field. As a first application the equations are specialized to the quasimagnetostatic approximation and in this context the general equations governing time-harmonic plane-wave disturbances of an initial static configuration are derived. For a prototype model of an incompressible isotropic magnetoelastic solid a specific formula for the acoustic shear wave speed is obtained, which allows results for different relative orientations of the underlying magnetic field and the direction of wave propagation to be compared. The general equations are then used to examine two-dimensional motions, and further expressions for the wave speed are obtained for a general incompressible isotropic magnetoelastic solid.  相似文献   

19.
According to the large amplitude equation of the circular plate on nonlinear elastic foundation , elastic resisting force has linear item , cubic nonlinear item and resisting bend elastic item. A nonlinear vibration equation is obtained with the method of Galerkin under the condition of fixed boundary. Floquet exponent at equilibrium point is obtained without external excitation. Its stability and condition of possible bifurcation is analysed. Possible chaotic vibration is analysed and studied with the method of Melnikov with external excitation . The critical curves of the chaotic region and phase figure under some foundation parameters are obtained with the method of digital artificial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号