首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A facile and environmentally friendly approach has been developed to prepare yolk‐shell porous microspheres of calcium phosphate by using calcium L ‐lactate pentahydrate (CL) as the calcium source and adenosine 5′‐triphosphate disodium salt (ATP) as the phosphate source through the microwave‐assisted hydrothermal method. The effects of the concentration of CL, the microwave hydrothermal temperature, and the time on the morphology and crystal phase of the product are investigated. The possible formation mechanism of yolk‐shell porous microspheres of calcium phosphate is proposed. Hemoglobin from bovine red cells (Hb) and ibuprofen (IBU) are used to explore the application potential of yolk‐shell porous microspheres of calcium phosphate in protein/drug loading and delivery. The experimental results indicate that the as‐prepared yolk‐shell porous microspheres of calcium phosphate have relatively high protein/drug loading capacity, sustained protein/drug release, favorable pH‐responsive release behavior, and a high biocompatibility in the cytotoxicity test. Therefore, the yolk‐shell porous microspheres of calcium phosphate have promising applications in various biomedical fields such as protein/drug delivery.  相似文献   

2.
Herein we report a rapid and green strategy for the preparation of amorphous calcium phosphate mesoporous microspheres (ACP‐MSs) using adenosine 5′‐diphosphate disodium salt (ADP) as an organic phosphorus source by a microwave‐assisted hydrothermal method. The effects of the pH value, the reaction time, and temperature on the crystal phase and morphology of the product are investigated. The ADP biomolecules used in this strategy play an important role in the formation of ACP‐MSs. The as‐prepared ACP‐MSs are efficient for anticancer drug delivery by using doxorubicin (Dox) as a model drug, and the Dox‐loaded ACP‐MSs show a high ability to damage cancer cells. Moreover, the ACP‐MSs drug delivery system exhibits a pH‐responsive drug‐release behavior due to the degradation of ACP‐MSs at a low pH value, thus, it is promising for applications in pH‐responsive drug delivery.  相似文献   

3.
We report dual pH‐responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)‐shell (chitosan) structure with dual pH‐responsive drug release function. The fabricated core‐shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core‐shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core‐shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core‐shell microcapsules were a potential candidate of dual‐drug carriers.  相似文献   

4.
Herein, the synthesis and potential application as cargo delivery systems of thermo‐responsive poly(N‐vinylcaprolactam) (PVCL)‐based, pH‐responsive poly(2‐(diethylamino)ethyl) methacrylate (PDEAEMA)‐based, and thermo‐, and pH‐responsive PDEAEMA/PVCL‐based core–shell nanogels are reported. All the nanogels have been synthesized using different dextran‐methacrylates (Dex‐MAs) as macro‐cross‐linkers. Doxorubicin hydrochloride (DOXO), an anticancer drug, has been effectively loaded into nanogels via hydrogen‐bonding interactions between ? OH groups of DOXO and ? OH groups of Dex‐MA chains. Drug‐release profiles at various pHs, and the cytocompatibility of the DOXO‐loaded nanogels have been assessed in vitro using cervical cancer HeLa and breast cancer MDA‐MB‐231 cell lines. In all the cases, the DOXO release is controlled by Fickian diffusion and case‐II transport, being the diffusional process dominant. In addition, DOXO‐loaded nanogels are efficiently internalized by HeLa and MDA‐MB‐231 cells and DOXO is progressively released in time. Therefore, nanogels synthesized could be suitable and potentially useful as nanocarriers for antitumor drug delivery. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1694–1705  相似文献   

5.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

6.
In the present research, we have investigated a drug delivery system based on the pH‐responsive behaviors of zein colloidal nanoparticles coated with sodium caseinate (SC) and poly ethylene imine (PEI). These systematically designed nanoparticles were used as nanocarriers for encapsulation of ellipticine (EPT), as an anticancer drug. SC and PEI coatings were applied through electrostatic adsorption, leading to the increased size and improved polydispersity index of nanoparticles as well as sustained release of drug. Physicochemical characteristics such as hydrodynamic diameter, size distribution, zeta potential and morphology of nanoparticles prepared using different formulations and conditions were also determined. Based on the results, EPT was encapsulated into the prepared nanoparticles with a high drug loading capacity (5.06%) and encapsulation efficiency (94.8%) under optimal conditions. in vitro experiments demonstrated that the release of EPT from zein‐based nanoparticles was pH sensitive. When the pH level decreased from 7.4 to 5.5, the rate of drug release was considerably enhanced. The mechanism of pH‐responsive complexation in the drug encapsulation and release processes was extensively investigated. The pH‐dependent electrostatic interactions and drug state were hypothesized to affect the release profiles. Compared to the EPT‐loaded zein/PEI nanoparticles, the EPT‐loaded zein/SC nanoparticles exhibited a better drug sustained‐release profile, with a smaller initial burst release and longer release period. According to the results of in vitro cytotoxicity experiments, drug‐free nanoparticles were associated with a negligible cytotoxicity, whereas the EPT‐loaded nanoparticles displayed a high toxicity for the cancer cell line, A549. Our findings indicate that these pH‐sensitive protein‐based nanoparticles can be used as novel nanotherapeutic tools and potential antineoplastic drug carriers for cancer chemotherapy with controlled release.  相似文献   

7.
A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co‐delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as‐prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI‐FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI‐FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co‐delivery system to selectively bind with and enter into the target cancer cells. PEI‐FA‐coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI‐FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH‐controlled release. In vitro pH‐responsive drug/siRNA co‐delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF‐7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH‐responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl‐2 protein into the HeLa cells, the expression of the anti‐apoptotic protein Bcl‐2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and targeted drug and gene co‐delivery in cancer treatment.  相似文献   

8.
Human ferritins are emerging platforms for non‐toxic protein‐based drug delivery, owing to their intrinsic or acquirable targeting abilities to cancer cells and hollow cage structures for drug loading. However, reliable strategies for high‐level drug encapsulation within ferritin cavities and prompt cellular drug release are still lacking. Ferritin nanocages were developed with partially opened hydrophobic channels, which provide stable routes for spontaneous and highly accumulated loading of FeII‐conjugated drugs as well as pH‐responsive rapid drug release at endoplasmic pH. Multiple cancer‐related compounds, such as doxorubicin, curcumin, and quercetin, were actively and heavily loaded onto the prepared nicked ferritin. Drugs on these minimally modified ferritins were effectively delivered inside cancer cells with high toxicity.  相似文献   

9.
The fabrication of hierarchical magnetic nanomaterials with well‐defined structure, high magnetic response, excellent colloidal stability, and biocompatibility is highly sought after for drug‐delivery systems. Herein, a new kind of hollow‐core magnetic colloidal nanocrystal cluster (HMCNC) with porous shell and tunable hollow chamber is synthesized by a one‐pot solvothermal process. Its novelty lies in the “tunability” of the hollow chamber and of the pore structure within the shell through controlled feeding of sodium citrate and water, respectively. Furthermore, by using the ligand‐exchange method, folate‐modified poly(acrylic acid) was immobilized on the surface of HMCNCs to create folate‐targeted HMCNCs (folate‐HMCNCs), which endowed them with excellent colloidal stability, pH sensitivity, and, more importantly, folate receptor‐targeting ability. These assemblages exhibited excellent colloidal stability in plasma solution. Doxorubicin (DOX), as a model anticancer agent, was loaded within the hollow core of these folate‐HMCNCs (folate‐HMCNCs‐DOX), and drug‐release experiments proved that the folate‐HMCNCs‐DOX demonstrated pH‐dependent release behavior. The folate‐HMCNCs‐DOX assemblages also exhibited higher potent cytotoxicity to HeLa cells than free doxorubicin. Moreover, folate‐HMCNCs‐DOX showed rapid cell uptake apart from the enhanced cytotoxicity to HeLa cells. Experimental results confirmed that the synthesized folate‐HMCNCs are smart nanovehicles as a result of their improved folate receptor‐targeting abilities and also because of their combined pH‐ and magnetic‐stimuli response for applications in drug delivery.  相似文献   

10.
A simple and green strategy is reported for the preparation, drug loading, and release properties of a drug delivery system consisting of calcium phosphate (CP) nanocarriers dual‐loaded with bovine serum albumin (BSA) and hydrophobic drug ibuprofen (IBU). The sequential loading of BSA and IBU in calcium phosphate nanocarriers and in vitro simultaneous release of BSA and IBU are realized and investigated. In this method, BSA, which is used as a model protein drug, is encapsulated in situ in calcium phosphate nanocarriers. Subsequently, the typical hydrophobic drug IBU is loaded in the BSA/CP drug delivery system, forming the IBU/BSA/CP dual drug delivery system. The experiments reveal that the preloaded BSA not only reduces the cytotoxicity of calcium phosphate nanocarriers but also significantly improves the IBU drug loading capacity in calcium phosphate nanocarriers and greatly extends the duration of drug release. Thus, the as‐prepared IBU/BSA/CP dual drug delivery system is promising for drug delivery applications.  相似文献   

11.
Stimuli‐responsive polymer nanoparticles are playing an increasingly more important role in drug delivery applications. However, limited knowledge has been accumulated about processes which use stimuli‐responsive polymer nanospheres (matrix nanoparticles whose entire mass is solid) to carry and deliver hydrophobic therapeutics in aqueous solution. In this research, pyrene was selected as a model hydrophobic drug and a pyrene‐loaded core‐shell structured nanosphere named poly(DEAEMA)‐poly(PEGMA) was designed as a drug carrier where DEAEMA and PEGMA represent 2‐(diethylamino)ethyl methacrylate and poly(ethylene glycol) methacrylate, respectively. The pyrene‐loaded core‐shell nanospheres were prepared via an in situ two‐step semibatch emulsion polymerization method. The particle size of the core‐shell nanosphere can be well controlled through adjusting the level of surfactant used in the polymerization where an average particle diameter of below 100 nm was readily achieved. The surfactant was removed via a dialysis operation after polymerization. Egg lecithin vesicles (liposome) were prepared to mimic the membrane of a cell and to receive the released pyrene from the nanosphere carriers. The in vitro release profiles of pyrene toward different pH liposome vesicles were recorded as a function of time at 37 °C. It was found that release of pyrene from the core‐shell polymer matrix can be triggered by a change in the environmental pH. In particular the pyrene‐loaded nanospheres are capable of responding to a narrow window of pH change from pH = 5, 6, to 7 and can achieve a significant pyrene release of above 80% within 90 h. The rate of release increased with a decrease in pH. A first‐order kinetic model was proposed to describe the rate of release with respect to the concentration of pyrene in the polymer matrix. The first‐order rate constant of release k was thus determined as 0.049 h?1 for pH = 5; 0.043 h?1 for pH = 6; and 0.035 h?1 for pH = 7 at 37 °C. The release of pyrene was considered to follow a diffusion‐controlled mechanism. The synthesis and encapsulation process developed herein provides a new approach to prepare smart nanoparticles for efficient delivery of hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4440–4450  相似文献   

12.
Targeted drug delivery is a promising approach to overcome the limitations of classical chemotherapy. In this respect, Imatinib‐loaded chitosan‐modified magnetic nanoparticles were prepared as a pH sensitive system for targeted delivery of drug to tumor sites by applying a magnetic field. The proposed magnetic nanoparticles were prepared through modification of magnetic Fe3O4 nanoparticles with chitosan and Imatinib. The structural, morphological and physicochemical properties of the synthesized nanoparticles were determined by different analytical techniques including energy‐dispersive X‐ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), Fourier‐transform infrared (FTIR) spectroscopy, high resolution transmission electron microscopy (HR‐TEM), vibrating sample magnetometry (VSM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). UV/visible spectrophotometry was used to measure the Imatinib contents. Thermal stability of the prepared particles was investigated and their efficiency of drug loading and release profile were evaluated. The results demonstrated that Fe3O4@CS acts as a pH responsive nanocarrier in releasing the loaded Imatinib molecules. Furthermore, the Fe3O4@CS/Imatinib nanoparticles displayed cytotoxic effect against MCF‐7 breast cancer cells. Results of this study can provide new insights in the development of pH responsive targeted drug delivery systems to overcome the side effects of conventional chemotherapy.  相似文献   

13.
Monodisperse poly(acrylic acid)‐modified Fe3O4 (PAA@Fe3O4) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe3O4 hollow spheres by a vacuum‐casting route and photo‐initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe3O4 spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as‐prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell‐uptake process of DOX‐loaded PAA@Fe3O4 was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX‐loaded PAA@Fe3O4 increased. These results indicate that pH‐responsive magnetic PAA@Fe3O4 spheres have the potential to be used as anticancer drug carriers.  相似文献   

14.
《化学:亚洲杂志》2018,13(18):2723-2729
In this research, a series of random and block amphiphilic copolymers of norbornene derivatives containing biocompatible natural triterpenoid and oligo(ethylene glycol) pendants were synthesized by ring‐opening metathesis polymerization. These copolymers were heat and pH responsive, and could self‐assemble into core–shell spherical micelles in aqueous solution. Their hydrodynamic diameters corresponded to pH values and monomer sequences. By evaluating the loading and release capacity of hydrophobic molecules, it was found that 1) the higher the content of the hydrophobic triterpenoid, the higher the loading capacity; 2) the release speed could be trigged by the pH because of the deprotonation of the carboxyl groups on the triterpenoid. Additionally, the copolymers exhibited low cytotoxicity toward L929 cells, which makes them potential nanocarrier candidates for controlled drug delivery.  相似文献   

15.
Multicompartmental responsive microstructures with the capability for the pre‐programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual‐responsive blocks (temperature for poly(N‐isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2‐vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water‐soluble hydrophilic macromolecules. For these dual‐loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out‐of‐shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out‐of‐core release (pH). Reversing stimulus order completely alters the release process.  相似文献   

16.
A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH‐responsive drug release exploits the pH‐dependent changes in the coordination stoichiometry of iron(III)–3,4‐dihydroxyphenylalanine (DOPA) complexes, which play a major cross‐linking role in mussel byssal threads. Doxorubicin‐loaded polymeric NPs that are based on FeIII–DOPA complexation were thus synthesized with a DOPA‐modified recombinant mussel adhesive protein through a co‐electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the FeIII–DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that FeIII–DOPA complexation can be successfully utilized as a new design principle for pH‐responsive NPs for diverse controlled drug‐delivery applications.  相似文献   

17.
A controlled drug‐delivery system has been developed based on mesoporous silica nanoparticles that deliver anticancer drugs into cancer cells with minimized side effects. The copolymer of two oligo(ethylene glycol) macromonomers cross‐linked by the disulfide linker N,N′‐bis(acryloyl)cystamine is used to cap hollow mesoporous silica nanoparticles (HMSNs) to form a core/shell structure. The HMSN core is applied as a drug storage unit for its high drug loading capability, whereas the polymer shell is employed as a switch owing to its redox/temperature dual responses. The release behavior in vitro of doxorubicin demonstrated that the loaded drugs could be released rapidly at higher temperature or in the presence of glutathione (GSH). Thus, the dual‐stimulus polymer shell exhibiting a volume phase transition temperature higher than 37 °C can effectively avoid drug leakage in the bloodstream owing to the swollen state of the shell. Once internalized into cells, the carriers shed the polymer shell because of cleavage of the disulfide bonds by GSH, which results in the release of the loaded drugs in cytosol. This work may prove to be a significant development in on‐demand drug release systems for cancer therapy.  相似文献   

18.
Calcium phosphates (CPs), as the major inorganic component of biological hard tissues, have been investigated for applications as biomaterials owing to their excellent biocompatibility. However, the traditional synthetic CPs are usually prepared from inorganic phosphorus and calcium sources. Herein, we report a new strategy for the synthesis of a variety of calcium–phosphate nanostructures, including porous amorphous calcium phosphate (ACP) microspheres, hydroxyapatite (HAP) nanorods, and ACP/HAP composite microspheres, by using fructose 1,6‐bisphosphate trisodium salt (FBP) as an organic phosphorus source in aqueous solution in a rapid microwave‐assisted hydrothermal reaction. The important role of FBP and the effect of the experimental conditions on the formation and evolution of the CPs nanostructures were investigated. The crystal phase and composition of the as‐prepared products were characterized by powder X‐ray diffraction (XRD), FTIR spectroscopy, and thermogravimetric (TGA) analysis and the morphologies of the products were characterized by SEM and TEM. This method is facile, rapid, surfactant‐free, and environmentally friendly. The as‐prepared porous ACP microspheres have a relatively high drug‐loading capacity and good sustained drug‐release behavior; thus, they are promising for applications in drug delivery.  相似文献   

19.
Core(polyvinyl neodecanoate‐ethylene glycol dimethacrylate)‐shell(polyvinyl alcohol) (core (P(VND‐EGDMA))‐shell(PVA)) microspheres were developed by seeded polymerization with the use of conventional free radical and RAFT/MADIX mediated polymerization. Poly(vinyl pivalate) PVPi was grafted onto microspheres prepared via suspension polymerization of vinylneodecanoate and ethylene glycol dimethacrylate. The amount of grafted polymer was found to be independent from the technique used with conventional free radical polymerization and MADIX polymerization resulting into similar shell thicknesses. Both systems—grafting via free radical polymerization or the MADIX process—were found to follow slightly different kinetics. While the free radical polymerization resulted in a weight gain linear with the monomer consumption in solution the growth in the MADIX controlled system experienced a delay. The core‐shell microspheres were obtained by hydrolysis of the poly(vinyl pivalate) surface grafted brushes to form poly(vinyl alcohol). During hydrolysis the microspheres lost a significant amount of weight, consistent with the hydrolysis of 40–70% of all VPi units. Drug loading was found to be independent of the shell layer thickness, suggesting that the drug loading is governed by the amount of bulk material. The shell layer does not appear to represent an obstacle to the drug ingress. Cell testing using colorectal cancer cell lines HT 29 confirm the biocompatibility of the empty microspheres whereas the clofazimine loaded particles lead to 50% cell death, confirming the release of the drug. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3256–3272, 2007  相似文献   

20.
In this work, a novel type of block copolymer micelles with K+‐responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self‐assembly of poly(ethylene glycol)‐b‐poly(N‐isopropylacry‐lamide‐co‐benzo‐18‐crown‐6‐acrylamide) (PEG‐b‐P(NIPAM‐co‐B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA‐loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10−3m , as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC‐T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+‐induced intracellular release. Such K+‐responsive block copolymer micelles are highly potential as new‐generation of smart nanocarriers for targeted intracellular delivery of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号