首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
IntroductionThemicropolarcontinuumtheoryisatypicalandwideapplicatedtheoryinthegeneralizedcontinuumtheoriesandwasgenerallyrecognizedlongago .Manymonographsandalargenumberofscientificpapersconcerningthisfieldarepublished .Wehaverestudiedtheexistingpolarcontinuumtheoriesandfoundthatsomebasicbalancelawsandprinciplesofthemareincompleteandthereexistsometheoreticaldefectswhichshouldberemoved .Forcontrastandclaritywenowlistthetraditionalbasicbalancelawsandequationsformicropolarcontinuumtheoryasfollows…  相似文献   

3.
IntroductionThisworkisadirectcontinuationandasupplementofRefs .[1~8] .InRefs.[1~8]thecoupledbalancelawsandequationsofmomentum ,angularmomentumandenergyaswellasthenewHamiltonprinciple,principleofvirtualpowerandNoethertheoremhavebeenpresented .However,thecoupledconservationlawsofmassandinertiahavenotbeenreestablishedyet.Thepurposeofthispaperistoreestablishtheconservationlawsandequationsofmassandinertiaandtocombinethemwiththecoupledbalancelawsandequationsofmomentum ,angularmomentum ,energyand…  相似文献   

4.
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally,some existing results are reduced immediately as special cases.  相似文献   

5.
Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.  相似文献   

6.
Based on the restudies of existing polar continuum theories rather complete systems of basic balance laws and equations for micropolar continuum theory are presented. In these new systems not only the additional angular momentum, surface moment and body moment produced by the linear momentum, surface force and body force, respectively, but also the additional velocity produced by the angular velocity are considered. The new coupled balance laws of linear momentum, angular momentum and energy are reestablished. From them the new coupled local and nonlocal balance equations are naturally derived. Via contrast it can be clearly seen that the new results are believed to be rather general and complete. Foundation items: the National Natural Science Foundation of China (10072024); the Research Foundation of Liaoning Education Committee (990111001) Biography: Dupai Tian-min (1931≈)  相似文献   

7.
The purpose is to reestablish the coupled conservation laws, the local conservation equations and the jump conditions of mass and inertia for polar continuum theories. In this connection the new material derivatives of the deformation gradient, the line element, the surface element and the volume element were derived and the generalized Reynolds transport theorem was presented. Combining, these conservation laws of mass and inertia with the balance laws of momentum, angular momentum and energy derived in our previous papers of this series, a rather complete system of coupled basic laws and principles for polar continuum theories is constituted on the whole. From this system the coupled nonlocal balance equations of mass, inertia, momentum, angular momentum and energy may be obtained by the usual localization. Contributed by DAI Tian-min, Original Member of Editorial Committee, AMM Foundation items: the National Natural Science Foundation of China (10072024); the Research Foundation of Liaoning Education Committee (990111001) Biography: DAI Tian-min (1931≈)  相似文献   

8.
IntroductionContinuummechanicsisnotonlyanoldandbutalsoayoungscientificdiscipline.Itconsistsofsomefundamentallaws,whicharevalidforallbodiesirrespectiveoftheirshapes,constitutionsandconstitutiverelations,whichmustreflectthenatureofthematerialandtheconsti…  相似文献   

9.
A continuum theory for the chemical vapor deposition of thin solid films is proposed, in which a flowing, chemically reacting, gaseous mixture is coupled to the bulk of a growing thin film via the equations that govern the morphological evolution of the interface separating them. The vapor-film interface is viewed as a surface of zero thickness capable of sustaining mass and endowed with thermodynamic variables that account for its distinct structure. We consider situations in which species diffusion and heat conduction occur in all three phases (vapor, bulk and surface), with the former mechanism augmented by the convective transport of particles in the gas. Special attention is given to the chemical reactions that occur both in the vapor and on the film surface. Ours is a conceptual framework based on conservation laws for chemical species, momentum and energy, together with a separate balance of configurational forces. These balances are supplemented by an appropriate version of the second law which is used to develop suitable constitutive relations for each of the phases. In particular, we investigate the case of an elastic film, deposited on a rigid substrate and in contact with a reacting, multispecies, ideal vapor, whose surface behaves like an anisotropic, chemically reactive, multicomponent, ideal lattice gas. In addition to recovering the standard equations that describe the behavior of the gas and film phases, we derive the coupled PDE's that govern the interfacial morphological, chemical, and thermal evolution. In particular, the constitutively augmented interfacial configurational force balance provides a “kinetic relation” linking the thermodynamic “driving force” at the film surface to the growth rate. The special cases of (i) negligible interfacial species densities, and (ii) local (mechanical) equilibrium of both multi- and single-species films are investigated.  相似文献   

10.
IntroductionThispaperisadirectcontinuationofRef.[1 ] .InitthecoupledconservationlawofenergypresentedinRef.[2 ]wasextendedandtherathercompletesystemsofbasicbalancelawsandequationsformicropolarcontinuumtheoryhavebeenconstitutedbycombiningtherenewedresultsandthetraditionalconservationlawsofmassandmicroinertiaandtheentropyinequality .Thepurposeofthispaperistorestablishthesystemsofbasicbalancelawsandequationsformicromorphiccontinuumtheoryandcouplestresstheoryviadirecttransitionsandreductionsfromth…  相似文献   

11.
In the present work we treat granular materials as mixtures composed of a solid and a surrounding void continuum, proposing then a continuum thermodynamic theory for it. In contrast to the common mass-weighted balance equations of mass, momentum, energy and entropy for mixtures, the volume-weighted balance equations and the associated jump conditions of the corresponding physical quantities are derived in terms of volume-weighted field quantities here. The evolution equations of volume fractions, volume-weighted velocity, energy, and entropy are presented and explained in detail. By virtue of the second law of thermodynamics, three dissipative mechanisms are considered which are specialized for a simple set of linear constitutive equations. The derived theory is applied to the analysis of reversible and irreversible compaction of cohesionless granular particles when a vertical oscillation is exerted on the system. In this analysis, a hypothesis for the existence of a characteristic depth within the granular material in its closely compacted state is proposed to model the reversible compaction.  相似文献   

12.
The continuum mechanics of two-phase systems involving surface tension and surface properties is discussed.The integral forms of the balance laws are given for the following quantities: mass, linear momentum, angular momentum, total energy and entropy. Starting from these integral balance laws, the jump conditions and the entropy source at the interface are derived.  相似文献   

13.
The purpose is to reestablish the balance laws of momentum, angular momentum and energy and to derive the corresponding local and nonlocal balance equations for micromorphic continuum mechanics and couple stress theory. The desired results for micromorphic continuum mechanics and couple stress theory are naturally obtained via direct transitions and reductions from the coupled conservation law of energy for micropolar continuum theory, respectively. The basic balance laws and equations for micromorphic continuum mechanics and couple stress theory are constituted by combining these results derived here and the traditional conservation laws and equations of mass and microinertia and the entropy inequality. The incomplete degrees of the former related continuum theories are clarified. Finally, some special cases are conveniently derived. Foundation items: the National Natural Science Foundation of China (10072024); the Research Foundation of Liaoning Education Committee (990111001) Biography: DAI Tian-min (1931≈)  相似文献   

14.
The equilibrium of coherent and incoherent mismatched interfaces is reformulated in the context of continuum mechanics based on the Gibbs dividing surface concept. Two surface stresses are introduced: a coherent surface stress and an incoherent surface stress, as well as a transverse excess strain. The coherent surface stress and the transverse excess strain represent the thermodynamic driving forces of stretching the interface while the incoherent surface stress represents the driving force of stretching one crystal while holding the other fixed and thereby altering the structure of the interface. These three quantities fully characterize the elastic behavior of coherent and incoherent interfaces as a function of the in-plane strain, the transverse stress and the mismatch strain. The isotropic case is developed in detail and particular attention is paid to the case of interfacial thermo-elasticity. This exercise provides an insight on the physical significance of the interfacial elastic constants introduced in the formulation and illustrates the obvious coupling between the interface structure and its associated thermodynamics quantities. Finally, an example based on atomistic simulations of Cu/Cu2O interfaces is given to demonstrate the relevance of the generalized interfacial formulation and to emphasize the dependence of the interfacial thermodynamic quantities on the incoherency strain with an actual material system.  相似文献   

15.
The general balance equations are developed for an interface represented by a dividing surface and for a moving common line represented as an intersection of dividing surfaces. The surface excess variables associated with a dividing surface are expressed both in terms of those variables describing the three-dimensional interfacial region of finite thickness and in terms of those variables describing bulk phases that extend up to the dividing surface.A structural model for the interface is suggested in which a suspension of solid bodies representing surfactant molecules is distributed about a singular surface separating two adjacent bulk solvent phases. The suspension is required to have the same average behavior as the interfacial region. This is interpreted as meaning that the general jump balance for a continuum dividing surface represented by an interfacial suspension is a local area average. Specific results are derived for two structural models, each in the same simple shear field. One consists of a dilute suspension of neutrally buoyant spheres floating with their centers restricted to the dividing surface. The other is a dilute suspension of chains of neutrally buoyant spheres with the sphere at one end of the chain floating in the dividing surface.  相似文献   

16.
Ionic electro-active polymer is an active material consisting in a polyelectrolyte (for example Nafion). Such material is usually used as thin film sandwiched between two platinum electrodes. The polymer undergoes large bending motions when an electric field is applied across the thickness. Conversely, a voltage can be detected between both electrodes when the polymer is suddenly bent. The solvent-saturated polymer is fully dissociated, releasing cations of small size. We used a continuous medium approach. The material is modelled by the coexistence of two phases; it can be considered as a porous medium where the deformable solid phase is the polymer backbone with fixed anions; the electrolyte phase is made of a solvent (usually water) with free cations. The microscale conservation laws of mass, linear momentum and energy and the Maxwell’s equations are first written for each phase. The physical quantities linked to the interfaces are deduced. The use of an average technique applied to the two-phase medium finally leads to an Eulerian formulation of the conservation laws of the complete material. Macroscale equations relative to each phase provide exchanges through the interfaces. An analysis of the balance equations of kinetic, potential and internal energy highlights the phenomena responsible of the conversion of one kind of energy into another, especially the dissipative ones : viscous frictions and Joule effect.  相似文献   

17.
We consider a classical derivation of a continuum theory, based on the fundamental balance laws of mass and momenta, for a body with internal corner and surface contact interactions. The balances of mass and linear and angular momentum are applied to the arbitrary parts of a continuum which supports non-classical internal corner and surface contact interactions. The form of the specific corner contact interaction force measured per unit length of the corner is derived. A generalized form of Cauchy’s stress theorem is obtained, which shows that the surface traction on an oriented surface depends in a specific way on both the oriented unit normal as well as the curvature of the surface. An explicit form of the surface-couple traction which acts on every oriented surface is obtained. Two fields in the continuum, which are denoted as stress and hyperstress fields, are shown to exist, and their role in representing the surface traction and the surface-couple traction is identified. Finally, the field equations for this theory are determined, and a fundamental power theorem is derived. In the absence of internal corner and surface-couple traction interactions, the equations of classical continuum mechanics are recovered. There is no appeal to any ‘principle of virtual power’ in this work.  相似文献   

18.
Within the framework of a procedure for scale-changing by averaging a representative elementary volume, theorems are developed to relate the averages of derivatives to the derivatives of averages over a surface, using elementary differential calculus. These theorems form the basis of a general macroscopic balance equation for a given quantity over interfaces of a dispersed multiphase medium. The equations of phase interfaces complement equations related to bulk phases describing transport in dispersed multiphase media.  相似文献   

19.
This study investigates the microstretch continuum modeling of granular assemblies while accounting for both the dilatant and rotational degrees of freedom of a macroelement. By introducing the solid volume fraction and the gyration radius of a granular system, the balance equations of the microstretch continuum are transformed into a new formulation of evolution equations comprising six variables: the solid volume fraction, the gyration radius, the velocity field, the averaged angular velocity, the rate of gyration radius, and the internal energy. The bulk microinertia density, the averaged angular velocity, and the microgyration tensor at a macroscopic point are obtained in terms of discrete physical quantities. The bulk part and the rotational part of the microgyration tensor are proposed as the two indices to measure the local dilatancy and local rotation of granular assemblies. It is demonstrated in the numerical simulation that the two indices can be used to identify the shear band evolution in a granular system under a biaxial compression.  相似文献   

20.
 The interfacial momentum and torque balance equations for deforming interfaces between nematic polymers and isotropic viscous fluids are derived and analyzed with respect to shape selection and interfacial nematic ordering. It is found that the interfacial momentum balance equation for nematic interfaces involves bending forces that act normal to the interface, and that interfacial pressure jumps may exist even for planar surfaces. In addition tangential forces on nematic interfaces arise in the presence of surface gradients of the tensor order parameter. The torque balance equation shows that couple stress jumps are balanced by the surface molecular field. The interfacial balance equations are shown to be coupled such that nematic ordering depends on shape and vice versa. The governing dimensionless numbers for deforming nematic polymer interfaces are identified and the limiting regimes are discussed in reference to related experimental data. It is found that the ratio of Frank elasticity to surface anchoring controls whether the surface tensor order parameter deviates from its preferred equilibrium value. Whether the shape is affected, depends on the relative magnitudes of the isotropic surface tension, Frank bulk elasticity, and anchoring energy, and capillary number. Received: 16 April 1999/Accepted: 19 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号