首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate experimentally and theoretically the existence of excitable optical waves in semiconductor microcavities. Although similar to those observed in biological and chemical systems, these excitable optical waves are self-confined. This is due to a new dynamical scenario, where a stationary Turning pattern controls the propagation of waves in an excitable medium, thus bringing together the two paradigms of dynamical behavior (waves and patterns) in active media.  相似文献   

2.
Scroll waves are vortices that occur in three-dimensional excitable media. Scroll waves have been observed in a variety of systems including cardiac tissue, where they are associated with cardiac arrhythmias. The disorganization of scroll waves into chaotic behavior is thought to be the mechanism of ventricular fibrillation, which lethality is widely known. One of the possible mechanisms of scroll wave instability is negative filament tension, which was studied theoretically using low-dimensional models of excitable medium. In this article we perform a numerical study of negative filament tension using the Luo-Rudy phase 1 model, which is widely used in cardiac electrophysiology. We show that this instability exists in this model, study its manifestation and discuss its relation to cardiac arrhythmogenesis.  相似文献   

3.
We present a normal form for traveling waves in one-dimensional excitable media in the form of a differential delay equation. The normal form is built around the well-known saddle-node bifurcation generically present in excitable media. Finite wavelength effects are captured by a delay. The normal form describes the behavior of single pulses in a periodic domain and also the richer behavior of wave trains. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with the saddle node in a Bogdanov-Takens point, and a symmetry-breaking spatially inhomogeneous pitchfork bifurcation. We verify the existence of these bifurcations in numerical simulations. The parameters of the normal form are determined and its predictions are tested against numerical simulations of partial differential equation models of excitable media with good agreement.  相似文献   

4.
Spiral waves rigidly rotating in excitable media are studied by use of a free-boundary approach. This study reveals the selection principle which determines the shape and the rotation frequency of spiral waves in an unbounded medium with a given excitability. It is shown that a rigidly rotating spiral in a medium with a strongly reduced refractoriness is supported within a range of the medium excitability restricted by two universal limits. At the low excitability limit the spiral core radius diverges, while at the high excitability limit it vanishes. The simulations performed for the medium excitability higher than the high excitability limit reveal nonstationary rotating waves, which considerably differ from well-studied meandering spiral waves. It is shown how the proposed free-boundary approach can be extended to the case of an arbitrary refractoriness. The predictions of the free-boundary approach are in good agreement with the results from numerical simulations of the underlying reaction-diffusion model and with asymptotics derived earlier for highly and weakly excitable media.  相似文献   

5.
A basic state and parameter estimation scheme for an extended excitable system is presented, where time series from a spatial grid of sampling points are used to drive and synchronize corresponding model equations. Model parameters are estimated by minimizing the synchronization error. This estimation scheme is demonstrated using data from generic models of excitable media exhibiting spiral wave dynamics and chaotic spiral break-up that are implemented on a graphics processing unit.  相似文献   

6.
This volume is devoted to the presentation of the main contributions to the workshop "From oscillations to excitability: A case study in spatially extended systems," organized by the authors in Nice in June 1993. It gives an overview of the current research on spatiotemporal patterns in a wide range of systems that display self-oscillatory or excitable behavior. It tries to give a better understanding of the transition from the oscillatory to the excitable regime and of its effect on the properties of spiral waves, and to fill the gap between the theories and concepts used to describe both regimes in the so-called "active media."  相似文献   

7.
Wave propagation in the heart has a discrete nature, because it is mediated by discrete intercellular connections via gap junctions. Although effects of discreteness on wave propagation have been studied for planar traveling waves and vortexes (spiral waves) in two dimensions, its possible effects on vortexes (scroll waves) in three dimensions are not yet explored. In this article, we study the effect of discrete cell coupling on the filament dynamics in a generic model of an excitable medium. We find that reduced cell coupling decreases the line tension of scroll wave filaments and may induce negative filament tension instability in three-dimensional excitable lattices.  相似文献   

8.
Excitable media dynamics is the lossless active transmission of waves of excitation over a field of coupled elements, such as electrical excitation in heart tissue or nerve fibers, cAMP signaling in the slime mold Dictyostelium discoideum or waves of chemical activity in the Belousov-Zhabotinsky reaction. All these systems follow essentially the same generic dynamics, including undamped wave transmission and the self-organized emergence of circular target and self-sustaining spiral waves. We combine spiral recognition, using the established phase singularity technique, and a novel three-dimensional fitting algorithm for noise-resistant target wave recognition to extract all important events responsible for the layout of the asymptotic large-scale pattern. Space-time plots of these combined events reveal signatures of events leading to spiral formation, illuminating the microscopic mechanisms at work. This strategy can be applied to arbitrary excitable media data from either models or experiments, giving insight into for example the microscopic causes for formation of pathological spiral waves in heart tissue, which could lead to novel techniques for diagnosis, risk evaluation and treatment.  相似文献   

9.
Kinetic Monte Carlo simulations are used to study the stochastic two-species Lotka-Volterra model on a square lattice. For certain values of the model parameters, the system constitutes an excitable medium: travelling pulses and rotating spiral waves can be excited. Stable solitary pulses travel with constant (modulo stochastic fluctuations) shape and speed along a periodic lattice. The spiral waves observed persist sometimes for hundreds of rotations, but they are ultimately unstable and break-up (because of fluctuations and interactions between neighboring fronts) giving rise to complex dynamic behavior in which numerous small spiral waves rotate and interact with each other. It is interesting that travelling pulses and spiral waves can be exhibited by the model even for completely immobile species, due to the non-local reaction kinetics.  相似文献   

10.
李伟恒  潘飞  黎维新  唐国宁 《物理学报》2015,64(19):198201-198201
本文采用Bär-Eiswirth模型研究了两层可激发介质中螺旋波的动力学, 两层介质采用抑制和兴奋性非对称耦合. 数值模拟结果表明: 兴奋性非对称耦合可以促进两个不同频率的螺旋波锁频, 即使初始频率相差大, 两螺旋波也能实现锁频, 这种耦合使两个螺旋波具有最强的锁频能力; 当两层介质采用抑制性非对称耦合时, 只有当两个初始螺旋波的频率差比较小才能实现锁频, 而且比一般扩散耦合的锁频范围窄, 两螺旋波锁频能力达到最低水平; 当耦合强度和控制参数适当选取时, 抑制性和兴奋性非对称耦合既可以使其中一层介质维持螺旋波态, 使另一层介质中的螺旋波演化到静息态或低频靶波态, 也可以使两层介质中的螺旋波都漫游, 或都转变成靶波, 最后这两个靶波要么消失, 要么转变成平面波状的振荡斑图, 而且两层介质振荡是反相的, 此外在模拟中还观察到两螺旋波局部间歇锁频现象, 这些结果有助于人们理解在心脏系统中出现的复杂现象.  相似文献   

11.
We present a stable regime of asymmetric bound states for spiral pairs in a generic numerical model of a homogeneous excitable medium. In this regime, one spiral tip (slave) rotates around the other (master). Master-slave dynamics occur for both same-chirality and opposite-chirality spiral pairs in a range of parameters and initial conditions. We study the dependency of master-slave characteristics on the medium's excitation threshold and present a phenomenological model that accounts for the qualitative properties of master-slave dynamics.  相似文献   

12.
An advective field induces drift of a vortex in excitable media. The component of the drift velocity C( perpendicular ) perpendicular to the field is known to change its sign with the chirality of the vortex. In an experiment with vortices in an electric field in a chemical excitable medium, we have found unexpectedly that C( perpendicular ) changes its sign also independently of chirality with changing composition of the medium. We did not succeed to explain this phenomenon by using existing mathematical models of chemical excitable media. The experiment described calls for more realistic models.(c) 1999 American Institute of Physics.  相似文献   

13.
Potentially life-threatening cardiac arrhythmias can be iniated with stimuli timed to occur during the “vulnerable window (VW)”. We defined VW as the time interval between the “conditioning” and “test” stimuli following in sequence, during which the test stimulus response propagates in only one direction. We show that the VW is a generic feature of excitable media and describe the relationship between the properties of an excitable medium and the VW. We present asymptotic results that reveal the sensitivity of the VW to both the propagation velocity of the conditioning wavefront and the recovery process parameters. We also have identified a critical length of medium that must be excited in order to reveal vulnerability. Analytical results are in agreement with numerical studies.  相似文献   

14.
Here we propose mechanisms for suppressing non-steady-state motions--propagating pulses, spiral waves, spiral-wave chaos--in excitable media. Our approach is based on two points: (1) excitable media are multistable; and (2) traveling waves in excitable media can be separated into fast and slow motions, which can be considered independently. We show that weak impulses can be used to change the values of the slow variable at the front and back of a traveling wave, which leads to wave front and wave back velocities that are different from each other. This effect can destabilize the traveling wave, resulting in a transition to the rest state.  相似文献   

15.
非均匀可激介质中的螺旋波   总被引:1,自引:0,他引:1       下载免费PDF全文
张国勇  马军  甘正宁  陈勇 《物理学报》2008,57(11):6815-6823
以Barkley模型为对象,研究了可激介质的非均匀性对螺旋波斑图形成的影响.该模型中各参数与可激介质的属性密切相关,通过参数涨落的正态分布来刻画非均匀性,数值研究了单参数以及多参数涨落的正态分布情形下螺旋波斑图的形成.研究表明,可激介质的非均匀性对于螺旋波波纹的粗细及疏密程度有较大影响.参数涨落分布的方差越大,形成的螺旋波波纹越粗糙.对于两参数均匀分布的极端情形,当参数分布大于某一范围,无法形成螺旋波.这些都与螺旋波旋转的角频率密切相关.螺旋波旋转的角频率越大,螺旋波波纹越粗,同时波纹越密集;反之,螺旋波 关键词: 螺旋波 非均匀介质 Barkley模型  相似文献   

16.
韦海明  唐国宁 《物理学报》2011,60(4):40504-040504
在离散可激发介质Greenberg-Hasting模型中引入交替(alternans)行为,研究了交替行为对螺旋波的影响.数值结果表明:在适当选择参数下,交替对螺旋波有很大影响,例如交替导致螺旋波的形状振荡,形成呼吸螺旋波,交替使螺旋波漫游、漂移,甚至使螺旋波漫游出系统的边界,交替使螺旋波破碎形成小螺旋波、反靶波和时空混沌等,首次在均匀介质中观察到交替导致传导障碍,使螺旋波破碎和消失,并对发生这些现象的机理进行了分析. 关键词: 离散可激发介质 螺旋波 靶波 漫游  相似文献   

17.
《Physica A》2005,351(1):159-166
Scroll waves, a characteristic dynamical pattern of three-dimensional excitable media, exhibit an instability under low excitability conditions. This unstable regime can be partially controlled by using random forcing in a clear manifestation of the ordering role of a stochastic external perturbation. Analytical and numerical results confirm this unexpected noise effect.  相似文献   

18.
The life cycle of Dictyostelium discoideum provides a striking example of the transition from single cell behavior to multicellular cooperativity. In this paper the status of the attempts at making semiquantitative models of the aggregation phase of this cycle is reviewed. Specifically, it is discussed how the propagation of cAMP waves is a typical example of excitable signaling, which is then rendered unstable by coupling to cell chemotaxis. To investigate the streaming pattern that emerges from this clumping instability, we next turn to a new simulation strategy, which couples dynamical cell-like entities ("bions") to continuum chemical concentration fields. Finally, we discuss two directions for further research: One is the study of the robustness with respect to the variation of system parameters (such as the cell density) exhibited by the biological system, but not by any simple model. The other concerns going beyond the aggregation phase to tackle the three-dimensional problem of slug formation and motion.  相似文献   

19.
Stabilized waves in weakly excitable media propagate with constant velocity and can be directionally controlled with applied excitability gradients. Multiple waves with directional control governed by pairwise interaction potentials form cohesive groups. Processional modes arise in collections of waves with random initial conditions, in which spontaneous alignment plays an essential role. Rotational modes occur with special initial conditions, and highly complex orbits are exhibited in larger groups. The ordered behavior is associated with waves following paths of minimum potential.  相似文献   

20.
The transverse coupling of chemical waves is investigated using a model scheme for excitable media. Chemical waves supported on the surfaces of a semipermeable membrane couple via diffusion through the membrane, resulting in new types of spatiotemporal behavior. The model studies show that spontaneous wave sources may develop from interacting planar waves, giving rise to a complex sequence of patterns accessible only by perturbation. Coupled circular waves result in the spontaneous formation of spiral waves, which subsequently develop patterns in distinct domains with characteristic features. The long time entrainment behavior of coupled spiral waves reveals regions of 1:2 phase locking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号