首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of a quantum rotator kicked by a periodic succession of δ-pulses is analysed in the Wigner representation. If the quantum resonance condition does not hold the quasi-energy wave functions are shown not to belong to a certain class of functions of the continuous spectrum. Exact quantum mappings for the rotator model are obtained and the influence of the discreteness of the phase space on the time behavior of the quantum correlation functions is analysed.  相似文献   

2.
We investigate the quantum dynamics of a periodically kicked nonlinear spin system which exhibits regular and chaotic dynamics in the classical regime. The quantum behaviour is characterised by the evolving eigenvalue distributions for the angular momentum components and the features, including recurrences in the quantum means and the presence of quantum tunneling, are discussed. We employ the evolution operator eigenvalue distribution to prove that coherent quantum tunneling occurs between the fixed points in the regular regions of phase space. Continual quantum measurement is included in the model: the classical dynamics are unchanged but a destruction of coherences occurs in the quantum system. Recurrences in the means are destroyed and quantum tunneling is suppressed by measurement, a manifestation of the quantum Zeno effect.  相似文献   

3.
We analyze the dynamics of the kicked top in a deeply quantum regime. Signatures of classical chaos in the quantum dynamics that can be identified from a semiclassical treatment persist in a deeply quantum regime. Structures in the classical-phase space can also be identified in the tunneling dynamics of the quantum system. Our results show that quantum chaos is observable in the regime that is accessible to future experiments with trapped ions or cold atoms.  相似文献   

4.
We present a detailed numerical study of a chaotic classical system and its quantum counterpart. The system is a special case of a kicked rotor and for certain parameter values possesses cantori dividing chaotic regions of the classical phase space. We investigate the diffusion of particles through a cantorus. A quantum analysis confirms that the cantori act as barriers. We numerically estimate the classical phase space flux through the cantorus per kick and relate this quantity to the behavior of the quantum system. We introduce decoherence via environmental interactions with the quantum system and observe the subsequent increase in the transport of quantum particles through the boundary.  相似文献   

5.
6.
We show that the bipartite entanglement in the two-mode quantum kicked top can reveal the underlying chaotic and regular structures in phase space: namely, the entanglement displays a rapid rise after a very short time for an initial spin coherent state centred in a chaotic region of the phase space, whereas the entanglement displays a periodic modulation for the coherent state centred at an elliptic fixed point. The quantum-classical correspondence is investigated by studying the mean and maximal linear entropy.  相似文献   

7.
Anomalous transport due to Levy-type flights in quantum kicked systems is studied. These systems are kicked rotor and kicked Harper model. It is confirmed for a kicked rotor that there exist special "magic" values of a control parameter of chaos K=K(*)=6.908 745 em leader for which an essential increasing of a localization length is obtained. Functional dependence of the localization length on both parameter of chaos and quasiclassical parameter h is studied. We also observe immense delocalization of the order of 10(9) for a kicked Harper model when a control parameter K is taken to be K(*)=6.349 972. This "magic" value corresponds to special phase space topology in the classical limit, when a hierarchical self-similar set of sticky islands emerges. The origin of the effect is of the general nature and similar immense delocalization as well as increasing of localization length can be found in other systems. (c) 2000 American Institute of Physics.  相似文献   

8.
We study two-component Bose-Einstein condensates that behave collectively as a spin system obeying the dynamics of a quantum kicked top. Depending on the nonlinear interaction between atoms in the classical limit, the kicked top exhibits both regular and chaotic dynamical behavior. The quantum entanglement is physically meaningful if the system is viewed as a bipartite system, where the subsystem is any one of the two modes. The dynamics of the entanglement between the two modes in this classical chaotic system has been investigated. The chaos leads to rapid rise and saturation of the quantum entanglement. Furthermore, the saturated values of the entanglement fall short of its maximum. The mean entanglement has been used to clearly display the close relation between quantum entanglement and underlying chaos.  相似文献   

9.
The quantum localization of chaotically diffusive classical motion is reviewed, using the kicked rotator as a simple but instructive example. The specific quantum steady state, which results from statistical relaxation in the discrete spectrum, is described in some detail. A new phenomenological theory of quantum dynamical relaxation is presented and compared with the previously existing theory.  相似文献   

10.
Quantum relaxation is studied in coupled quantum baker's maps. The classical systems are exactly solvable Kolmogorov systems, for which the exponential decay to equilibrium is known. They model the fundamental processes of transport in classically chaotic phase space. The quantum systems, in the absence of global symmetry, show a marked saturation in the level of transport, as the suppression of diffusion in the quantum kicked rotor, and eigenfunction localization in the position basis. In the presence of a global symmetry we study another model that has classically an identical decay to equilibrium, but-quantally shows resonant transport, no saturation, and large fluctuations around equilibrium. We generalize the quantization to finite multibaker maps. As a byproduct we introduce some simple models of quantal tunneling between classically chaotic regions of phase space.  相似文献   

11.
Using a freely falling cloud of cold cesium atoms periodically kicked by pulses from a vertical standing wave of laser light, we present the first experimental observation of high-order quantum accelerator modes. This confirms the recent prediction by Fishman, Guarneri, and Rebuzzini [Phys. Rev. Lett. 89, 084101 (2002)]]. We also show how these accelerator modes can be identified with the stable regions of phase space in a classical-like chaotic system, despite their intrinsically quantum origin.  相似文献   

12.
The effect of dissipation on a quantum system exhibiting chaos in its classical limit is studied by coupling the kicked quantum rotator to a reservoir with angular momentum exchange. A master equation is derived which maps the density matrix from one kick to the subsequent one. Several limiting cases are investigated. The limits of 0 and of vanishing dissipation serve as tests of consistency, in reproducing the maps of the classical kicked damped rotator and of the kicked quantum rotator, respectively. In the limit of strong dissipation the classical map reduces to a circle map. A quantum map corresponding to the circle map is therefore obtained in this limit. In the limit of infinite dissipation the density matrix becomes independent of the initial condition after a single application of the map, allowing for a simple analytical solution for the density matrix. In the semi-classical limit the quantum map reduces to a classical map with quantum mechanically determined classical noise terms, which are evaluated. For sufficiently small dissipation the physical character of the leading quantum corrections changes. Quantum mechanical interference effects then render the Wigner distribution negative in some parts of phase space and prevent its interpretation in classical terms. Numerical results will be presented in a subsequent paper.  相似文献   

13.
运用量子轨迹和量子Monte Carlo仿真的方法,研究耗散退相干对周期驱动的量子Harper (quantum kicked Harper, QKH)模型量子计算的影响.数值仿真结果表明,一定强度的耗散干扰将破坏QKH特征状态的动态局域化以及相空间的随机网结构.以相位阻尼信道噪声模型为例分析了保真度的衰减规律以及可信计算时间尺度.与静态干扰相比,在干扰强度小于某一阈值时,耗散干扰下的可信计算时间尺度随量子比特的增加而快速下降;而在干扰强度大于该阈值时,静态干扰下的可信计算时间尺度下降更快.  相似文献   

14.
叶宾  须文波  顾斌杰 《物理学报》2008,57(2):689-695
运用量子轨迹和量子Monte Carlo仿真的方法,研究耗散退相干对周期驱动的量子Harper (quantum kicked Harper, QKH)模型量子计算的影响.数值仿真结果表明,一定强度的耗散干扰将破坏QKH特征状态的动态局域化以及相空间的随机网结构.以相位阻尼信道噪声模型为例分析了保真度的衰减规律以及可信计算时间尺度.与静态干扰相比,在干扰强度小于某一阈值时,耗散干扰下的可信计算时间尺度随量子比特的增加而快速下降;而在干扰强度大于该阈值时,静态干扰下的可信计算时间尺度下降更快. 关键词: 量子计算 量子Harper模型 主方程 量子Monte Carlo方法  相似文献   

15.
J. Rueda 《Molecular physics》2013,111(9):1353-1369
We evaluate the dynamics of an algebraic model Hamiltonian for the vibrational motion of the water molecule. We pay special attention to the effects of the discrete symmetry of order 2 of the model. For a comparison between the quantum dynamics and the classical dynamics it is necessary to desymmetrize such quantum states which are based on types of motion which come in symmetry related pairs. For the other states based on motion invariant under the symmetry operation a desymmetrization would be meaningless. The desymmetrized quantum states show a simple connection to the guiding motions of the classical dynamics which can be used for a complete assignment of the states even though the system is not integrable in the sense of Liouville and shows chaotic behaviour in large parts of the classical phase space.  相似文献   

16.
We identify a border between regular and chaotic quantum dynamics. The border is characterized by a power-law decrease in the overlap between a state evolved under chaotic dynamics and the same state evolved under a slightly perturbed dynamics. For example, the overlap decay for the quantum kicked top is well fitted with [1+(q-1)(t/tau)2](1/(1-q)) (with the nonextensive entropic index q and tau depending on perturbation strength) in the region preceding the emergence of quantum interference effects. This region corresponds to the edge of chaos for the classical map from which the quantum chaotic dynamics is derived.  相似文献   

17.
The problems of the feedback of a measurement on the dynamics of quantum mechanical systems, which are chaotic in some way are studied. The system can be Hamiltonian or dissipative. For the latter case it is shown that measurements can be devised which do not affect the evolution of the system. Hamiltonian systems are discussed in terms of two models, one being the kicked quantum rotator and the other a two-state system driven by a field with two incommensurate frequencies. Both destructive and continuous measurements are discussed. For the quantum kicked rotator, in the absence of measurement, there is Anderson localisation due to quantum interference. Surprisingly the act of measurement, which might be expected to destroy the delicate interference, does not lead to delocalisation. Measurements however destroy the time-reversal invariance of the evolution of the Hamiltonian systems. In most circumstances it is shown that quantum chaotic systems can be effectively measured.  相似文献   

18.
《Physics letters. A》2020,384(8):126176
Measure synchronization is a well-known phenomenon in coupled classical Hamiltonian systems over last two decades. Here, synchronization in a pair of coupled Harper systems is investigated both in classical and quantum contexts. It seems that the concept of measure synchronization is restricted in the classical limit as it involves with the phase space. We show the quantum counterpart of the synchronization in a pair of coupled quantum kicked Harper chains. In the quantum context, the coupling occurs between two spins chains via a time and site dependent potential. We use the average interaction energy between the participating systems as an order parameter in both the contexts to establish a connection between the classical and the quantum scenarios. Besides, we also study the entanglement between the chains and difference between the average bare energies in the quantum context. Interestingly, all such indicators suggest a connection between the MS transition in classical maps and a phase transition in quantum spin chains.  相似文献   

19.
We derive a formula predicting dynamical tunneling rates from regular states to the chaotic sea in systems with a mixed phase space. Our approach is based on the introduction of a fictitious integrable system that resembles the regular dynamics within the island. For the standard map and other kicked systems we find agreement with numerical results for all regular states in a regime where resonance-assisted tunneling is not relevant.  相似文献   

20.
We consider a Bose-Einstein condensate which is split into two momentum components and then “kicked" at the Talbot time by an optical standing wave. The mean energy growth is shown to be suppressed or enhanced depending on the quantum phase between the two momentum components. Experimental verification is provided and we discuss possible implications of our results for recently suggested applications of kicked atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号