首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Gd2O3 particles (less than 2 microns) in suspension were evaluated as a potential contrast agent for liver-spleen imaging with magnetic resonance. The agent was administered IV to rabbits in doses ranging from 10 to 120 mumol/kg and the tissues removed after sacrifice for in vitro T1 and T2 analysis. The temporal response was determined in liver and spleen samples of rabbits given a fixed dose (60 mumol/kg) and sacrificed at intervals from 15 min to 60 hr later. Documentation of the subanatomic location of Gd2O3 particles in tissue was accomplished by electron microscopy and x-ray dispersion microanalysis. T1 weighted images were obtained at 0.12T on a prototype resistive scanner. The liver, spleen, and lung relaxation times are very responsive to Gd2O3 IV and the effect is dose related. A peak effect is observed between 3-7 hr after injection and relaxation times may normalize by 60 hr. By electron microscopic and x-ray analysis, Gd2O3 is most prominently found in the hepatic and splenic sinusoids. The images show marked enhancement of liver and splenic tissues, aiding in the clear delineation of these tissues from neighboring structures.  相似文献   

2.
The complex (electric) permittivity of aqueous solutions of dipolar solutes has been measured as a function of frequency between 1 MHz and 40 GHz. Solutes are the isomers DL-2-aminobutyric acid, DL-3-aminobutyric acid, and 4-aminobutyric acid, and also 6-aminohexanoic acid. The measured dielectric spectra show two dispersion/dielectric loss regions, one due to the orientational diffusion of the solute molecules the other one due to the dielectric relaxation of the solvent water. A relaxation spectral function based on a model of the solutions has been fitted to the measured frequency dependence of the complex permittivity. The values for the electric dipole moment and reorientation time of the zwitterionic part of the solute particles derived by this analysis from the measurements fairly agree with theoretical predictions. Quite remarkably, the dipole moment in solution of 4-aminobutyric acid and 6-aminohexanoic acid up to remarkably high solute concentrations is nearly constant. A noteworthy result for the hydration water of the amino acids is, that its relaxation time is almost independent of the solute dipole moment.  相似文献   

3.
Superparamagnetic MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrite (ISF) nanoparticles with narrow size distribution having average diameters of 6-8 nm were synthesized by a diol reduction of organic metals and the surface was modified to be hydrophilic by coating with succimer. Magnetic resonance imaging (MRI) contrast enhancement by dipolar coupling defined interactions between the synthesized ISFs and protons in the bulk water was investigated with initial susceptibility, magnetization and anisotropy of the succimer-coated ISFs. The relaxivity ratios, r2/r1, for MnFe2O4, Fe3O4 and CoFe2O4 were measured to be 12.2, 23.1 and 62.3, respectively, which demonstrate the potential usefulness of these magnetic nanoparticles as T2 contrast agents for MRI.  相似文献   

4.
The dynamic nuclear polarisation arising from dipolar interactions between unpaired electrons and protons in liquids decreases with increasing magnetic fieldH 0. Since the polarisation involves the same electron-proton flip-flop processes which are responsible for nuclear magnetic relaxation, we were able to determine the maximum possible enhancement factorV max of the protons in paramagnetic solutions as a function of the applied magnetic field from the dispersion of nuclear magnetic relaxation. The measurements of the frequency dependence of nuclear magnetic relaxation in the field range of 33 to 38000 Gauss show thatV max drops to one half of its low field value in fields of 2000 to 6000 Gauss depending on the solvent and on the temperature. An appreciable enhancement of the order of 50 or more seems to be possible in magnetic fields up to 30 or 40 kG.  相似文献   

5.
Ion irradiation is an original process to pattern the structural and as a consequence the magnetic properties of ultra-thin films, down to the nanometer scale. Patterns of dots and tracks have been fabricated by focused Ga+ ion beam scanned onto a Co layer with perpendicular magnetic anisotropy. Depending on the dose, the magnetic behaviour of the nanometric irradiated lines can be tuned from the ferromagnetic with reduced coercivity to paramagnetic. The larger the fluence, the smaller is the exchange between dots or tracks. These systems enabled investigations of the competition between exchange and dipolar interactions. For arrays designed with high irradiation doses and only coupled by dipolar interactions, the magnetic relaxation proceeds by the magnetization reversal of individual dots and follows a power-law time decay. Monte Carlo simulations reproduce this time dependence.  相似文献   

6.
Progressive saturation EPR measurements and EPR linewidth determinations have been performed on spin-labeled lipids in fluid phospholipid bilayer membranes to elucidate the mechanisms of relaxation enhancement by different paramagnetic ion salts. Such paramagnetic relaxation agents are widely used for structural EPR studies in biological systems, particularly with membranes. Metal ions of the 3d and 4f series were used as their chloride, sulfate, and perchlorate salts. For a given anion, the efficiency of relaxation enhancement is in the order Mn(2+) > or = Cu(2+) > Ni(2+) > Co(2+) approximately Dy(3+). A pronounced dependence of the paramagnetic relaxation enhancement on the anion is found in the order ClO(-)(4) > Cl(-) > SO(2-)(4). This is in the order of the octanol partition coefficients multiplied by spin exchange rate constants that were determined for the different paramagnetic salts in methanol. Detailed studies coupled with theoretical estimates reveal that, for the chlorides and perchlorates of Ni(2+) (and Co(2+)), the relaxation enhancements are dominated by Heisenberg spin exchange interactions with paramagnetic ions dissolved in fluid membranes. The dependence on membrane composition of the relaxation enhancement by intramembrane Heisenberg exchange indicates that the diffusion of the ions within the membrane takes place via water-filled defects. For the corresponding Cu(2+) salts, additional relaxation enhancements arise from dipolar interactions with ions within the membrane. For the case of Mn(2+) salts, static dipolar interactions with paramagnetic ions in the aqueous phase also make a further appreciable contribution to the spin-label relaxation enhancement. On this basis, different paramagnetic agents may be chosen to optimize sensitivity to different structurally correlated interactions. These results therefore will aid further spin-label EPR studies in structural biology.  相似文献   

7.
Red blood cell (RBC) suspensions, containing low-molecular weight (LMW) dysprosium (Dy) and gadolinium (Gd) chelates, were selected as a two-compartment system for the evaluation of the magnetic dipolar and susceptibility contributions to the transverse (T2) relaxation of solvent water protons. The influence of RBC geometry and degree of metal chelate compartmentalization on T2 was investigated by variation of the osmolality and hematocrit (HC), respectively. The T2-relaxation ability of Dy-chelates was markedly improved in RBC suspensions, in comparison to aqueous solutions, due to the presence of susceptibility effects that more than compensated for the low dipolar relaxation efficacy. Despite a smaller susceptibility effect, the Gd-chelates were still the most efficacious in shortening T2 due to their comparatively larger dipolar relaxation contribution. The results obtained with the Dy-chelates allowed the evaluation of the relative contributions of susceptibility and dipolar mediated relaxation for the Gd-chelates. The RBC geometry and degree of compartmentalization influenced strongly the T2 relaxation efficacy of Dy-chelates, as opposed to the Gd-chelates. Hemolysis eliminated the susceptibility effect, essentially removing the T2 relaxation ability of Dy-chelates. The T2 relaxation efficacy of Gd-chelates was improved by hemolysis due to enhancement of the dipolar relaxation. As a conclusion, RBC suspensions have clearly been shown to be a suitable ex vivo model with which to distinguish the different contrast mechanisms of LMW Dy- and Gd-based MRI contrast agents.  相似文献   

8.
The magnetic properties of GdBaMn2O5.0, which exhibits charge ordering, are studied from 2 to 400 K using single crystals. In a small magnetic field applied along the easy axis, the magnetization M shows a temperature-induced reversal which is sometimes found in ferrimagnets. In a large magnetic field, on the other hand, a sharp change in the slope of M(T) coming from an unusual turnabout of the magnetization of the Mn sublattices is observed. Those observations are essentially explained by a molecular field theory which highlights the role of delicate magnetic interactions between Gd3+ ions and the antiferromagnetically coupled Mn2+/Mn3+ sublattices.  相似文献   

9.
Electron spin relaxation times for four triarylmethyl (trityl) radicals at room temperature were measured by long-pulse saturation recovery, inversion recovery, and electron spin echo at 250 MHz, 1.5, 3.1, and 9.2 GHz in mixtures of water and glycerol. At 250 MHz T(1) is shorter than at X-band and more strongly dependent on viscosity. The enhanced relaxation at 250 MHz is attributed to modulation of electron-proton dipolar coupling by tumbling of the trityl radicals at rates that are comparable to the reciprocal of the resonance frequency. Deuteration of the solvent was used to distinguish relaxation due to solvent protons from the relaxation due to intra-molecular electron-proton interactions at 250 MHz. For trityl-CD(3), which contains no protons, modulation of dipolar interaction with solvent protons dominates T(1). For proton-containing radicals the relative importance of modulation of intra- and inter-molecular proton interactions varies with solution viscosity. The viscosity and frequency dependence of T(1) was modeled based on dipolar interaction with a defined number of protons at specified distances from the unpaired electron. At each of the frequencies examined T(2) decreases with increasing viscosity consistent with contributions from T(1) and from incomplete motional averaging of anisotropic hyperfine interaction.  相似文献   

10.
A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn_2Ge_2. Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn_2Ge_2. Variations of external magnetic field and temperature give rise to the first-order or second-order magnetic transitions from one phase to another. Based on this model, the magnetic curves of GdMn_2Ge_2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained. Based on the calculation, the H-T magnetic phase diagrams of GdMn_2Ge_2 are depicted. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated. It is shown that, in order to describe the magnetic properties of GdMn_2Ge_2, the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.  相似文献   

11.
12.
Measurements of spin-lattice relaxation time T 1 , second moment M 2 and neutron scattering have been performed for a polycrystalline sample of pyridinium nitrate as a function of hydrostatic pressure and temperature. The structure of this compound has also been analysed by the HF/6-31 G method. The results of the measurements and calculations have confirmed that reorientation of the pyridinium cation takes place between the potential minima of different values, and the asymmetry parameter decreases with increasing temperature. The temperature dependence of the asymmetry parameter is modified by the pressure applied. The presence of the hydrogen bond in this compound implies a very small activation volume and is responsible that the crystal does not undergo a phase transition to the disordered phase.  相似文献   

13.
The (29)Si spin-lattice relaxation in porous silica-based material 1, doped by ions Mn(2+) at a Si/Mn ratio of 3.5, is non-exponential, independent of magic-angle spinning (MAS) rates and governed by direct dipolar coupling between electron and nucleus where an electron relaxation time is estimated to be about 10(-8)s. In the absence of mutual energy-conserving spin flips (spin diffusion) in 1, the (29)Si T(2) time increases linearly with spinning rates. None was observed in diamagnetic porous system 2. The unexpected (29)Si T(2) dependence has been interpreted in terms of the large bulk magnetic susceptibility (BMS) effects. It has been shown that editing the (29)Si Hahn-echo MAS NMR spectra eliminates wide lines, belonging to (29)Si nuclei in the proximity of paramagnetic centers, and reduces the BMS broadenings in sideband patterns for nuclei remote from these centers.  相似文献   

14.
We have carried out 99/101Ru and 63/65Cu nuclear magnetic resonance experiments in order to investigate magnetic and electronic properties of the magnetic superconductor RuSr2RECu2O8 (RE=Gd, Eu and Y). The two kinds of 99/101Ru signals were observed in the magnetically ordered state for each system, suggesting a charge segregation of Ru5+ (S=3/2) and Ru4+ (S=1) ions in the RuO2 layers. The internal field at the Cu sites is revealed to be of the order of kilo Oe, indicating weak magnetic interactions between the CuO2 and RuO2 planes. The temperature dependence of nuclear spin-lattice relaxation time T1 of 63Cu in RE=Y shows a ‘spin gap’ like behavior, suggesting the system is under-doped.  相似文献   

15.
We explore the dielectric relaxation properties of NiFe nanowires in a nanoporous silicon template. Dielectric data of the NiFe–silicon structure show a strong relaxation resonance near 30 K. This system shows Arrhenius type of behavior in the temperature dependence of dissipation peaks vs. frequency. We report magnetic field dependence of dipolar relaxation rate and the appearance of structure in the dielectric spectrum related to multiple relaxation rates. A magnetic field affects both the exponential prefactor in the Arrhenius formula and the activation energy. From this field dependence we derive a simple exponential field dependence for the prefactor and linear field approximation for the activation energy which describes the data. We find a significant angular dependence of the dielectric relaxation spectrum for regular silicon and nanostructured silicon vs. magnetic field direction, and describe a simple sum rule that describes this dependence. We find that although similar behavior is observed in both template and nanostructured materials, the NiFe–silicon shows a more complex, magnetic field dependent relaxation spectrum.  相似文献   

16.
The relaxation time T1 values and nuclear Overhauser enhancement factor for 31P signal were determined in model solutions of metabolites ATP, PCr and Pi, and AMP at two frequencies and in H2O and 2H2O solutions. The data were analyzed to resolve the contribution of different relaxation mechanisms. A knowledge of NOE is important in the light of recent applications of double resonance methods to enhance the sensitivity of in vivo 31P spectroscopy. The results show that chemical shift anisotropy is the dominant mechanism for 31P in ATP at the high field, whereas the dipolar interaction mechanism is the main feature for the 31P relaxation of PCr and Pi. The dipolar mechanism responsible for NOE originates from interactions of solvent water with 31P moiety. Implications for in vivo spectroscopy are indicated.  相似文献   

17.
We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected frequency dependence of this peak at low frequencies (<1 Hz), suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.  相似文献   

18.
The relaxation in protein solutions has mainly been studied by nuclear magnetic relaxation dispersion (NMRD) techniques. NMRD data have mostly been analyzed in terms of fast chemical exchange of water between free water and water bound to proteins. Several approaches were used for the estimation of correlation time modulating the relaxation mechanism of bound water. On the other hand, in a nuclear magnetic resonance experiment, the relaxation rates of protein solutions (1/T1 and 1/T2) and also those of free water (1/T1f and 1/T2f) are measurable. However, the relaxation rates of bound water (1/T1b and 1/T2b) are not. Despite this, equating (1/T1-1/T1f)/2(1/T2-1/T2f) to (1/T1b)/2(1/T2b) leads to an expression involving only an effective tau that is related to the rotational correlation time (tau r) of proteins. Equating the ratios may therefore give a simple alternative method for the determination of tau r even if this method is limited to a single resonance frequency. In this work, a formula was derived for the solution of the effective tau. Then, the 1/T1 and 1/T2 in solutions of two globular proteins (lysozyme and albumin) and one nonglobular protein (gamma-globulin) were measured for different amounts of each protein. Next, the values of 1/T1 and 1/T2 were plotted vs. protein concentrations, and then the slopes of the fits were used in the derived equation for determining the effective tau values. Finally, the rotational correlation time tau r, calculated from tau, was used in the Stokes-Einstein relation to reproduce relevant radii. The effective tau values of lysozyme, albumin and gamma-globulin were found to be 5.89 ns, 7.03 ns and 8.8 ns, respectively. tau r values of albumin and lysozyme produce their Stokes radii. The present data suggest that use of the measurable ratio in the derived formula may give a simple way for the determination of the correlation times of lysozyme and albumin.  相似文献   

19.
20.
We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S = 12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at T(c) = 0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号