首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A bioactive Schiff base HL i.e. 2‐hydroxy‐benzoic acid(3,4‐dihydro‐2H ‐naphthalen‐1‐ylidene)‐hydrazide was synthesized by reacting equimolar amount of salicylic acid hydrazide and 1‐tetralone. Co(II), Ni(II) and Zn(II) complexes of ligand HL was synthesized in 1:1 and 1:2 molar ratio of metal to ligand. The structure of the synthesized ligand and metal complexes was established by elemental analysis, molar conductance, magnetic susceptibility measurements, electronic, IR and EPR spectral techniques. For determining the thermal stability the TGA has been done. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6–31 + g(d,p) basis set. Spectral data reveal that ligand behave uninegative tridentate in ML complexes and uninegative bidentate in ML2 complexes. On the basis of characterization octahedral geometry has been assigned for Co(II) and Ni(II) complexes, while tetrahedral for Zn(II) complexes. Antibacterial activity of the synthesized compounds were evaluated against Staphylococcus aureus , Bacillus subtilis, Escherichia coli , Xanthomonas campestris and Pseudomonas aeruginosa and the results revealed that metal complexes show enhanced activity in comparison to free ligand.  相似文献   

2.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

3.
Pentagonal-bipyramidal isothiocyanato Co(II) and Ni(II) complexes with condensation product of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were synthesized and characterized by elemental analyses, IR and UV–vis spectra, molar conductivity, and magnetic susceptibility. Crystal structures of the Co(II) and Ni(II) complexes were also determined. Antimicrobial activities of the ligand and metal complexes were examined.  相似文献   

4.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

5.
Six new macrocyclic complexes were synthesized by the template effect from reaction of 1,4-bis(2-carboxyaldehydephenoxy)butane, Ni(NO3)2 · 6H2O or Co(NO3)2 · 6H2O and various diamines. The metal-to-ligand ratios of Ni(II) or Co(II) metal complexes were found to be 1 : 1. Coordination of the Schiff base to Ni(II) and Co(II) through the two nitrogen and two oxygen atom (ONNO) are expected to reduce the electron density in the azomethine link and hydroxyl group. The Ni(II) and Co(II) complexes are proposed to be tetrahedral and are 1 : 2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structures are proposed from elemental analysis, FT-IR, UV-VIS, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

6.
《Journal of Coordination Chemistry》2012,65(17-18):1611-1619
Two new series of mononuclear and homobinuclear Co(II), Ni(II) and Cu(II) complexes with mono- and bis-azo compounds derived from 2,7-dihydroxynaphthalene and anthranilic acid or o-aminophenol are prepared and characterized by elemental and thermal analyses, conductance, IR, electronic, ESR spectra and magnetic moment measurements. The ligand field splitting parameters and Racah constant are calculated. The spectral and magnetic results obtained are utilized to determine the geometries around the metal(II) ion. The geometry of the complex formed depends on the structure of the ligand and the type of metal(II) ion. The mode of bonding of the ligand with the metal ions is deduced from IR spectra.  相似文献   

7.
Schiff bases of isatin were reported to possess antibacterial, antifungal, antiviral, anti-HIV, antiprotozoal, and anthelmintic activities1. They also exhibit significantanticonvulsant activity, apart from other pharmacological properties2. Conductingsubs…  相似文献   

8.
New metal based triazoles (1–12) have been synthesized by the interaction of novel Schiff base ligands (L1–L3) with the Co(II), Ni(II), Cu(II) and Zn(II) metal ions. The Schiff base ligands and their all metal(II) complexes have been thoroughly characterized using various physical, analytical and spectroscopic techniques. In vitro bacterial and fungal inhibition studies were carried out to examine the antibacterial and antifungal profile of the Schiff bases in comparison to their metal(II) complexes against two Gram‐positive, four Gram‐negative and six fungal strains. The bioactivity data showed the metal(II) complexes to have more potent antibacterial and antifungal activity than their uncomplexed parent Schiff bases against one or more bacterial and fungal species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

10.
The Schiff base ligand derived from indole-3-carboxaldehyde(indal) and glycylglycine(glygly) were synthesized and characterized by elemental analysis, IR, electronic spectrum, 1H NMR and mass spectrum. Co(II), Ni(II) and Cu(II)–indal-glygly Schiff base complexes were synthesized and characterized by elemental analysis, molar conductance, IR, electronic spectra, magnetic measurements, ESR, electrochemical studies, TGA, DSC analysis, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR spectral data show that the ligand is tridentate and the binding sites are azomethine nitrogen, peptide nitrogen and carboxylato oxygen atoms. Electronic spectral measurements indicate tetrahedral geometry for Co(II) and Ni(II) complexes and square planar geometry for Cu(II) complex. Magnetic measurements show weak ferromagnetic behaviour for Co(II) and Ni(II) complexes and paramagnetic behaviour for Cu(II) complex. ESR spectral data shows the ionic link between metal and the Schiff base ligand. The metal complexes are found to be stabilized in the unusual oxidation states of the metal ion during electrolysis. Thermal analysis of the complex indicates that the decomposition takes place in three steps. IR and thermal studies indicate that the fourth position would be occupied by a water molecule in complexes. XRD shows that the complexes have the crystallite size of 31, 40 and 67 nm, respectively. The surface morphology of the complexes was studied by SEM. The antimicrobial activity of the ligand and its complexes were screened by Kirby Bayer Disc Diffusion method. DNA cleavage studies were performed for metal–Schiff base complexes in presence of hydrogen peroxide as oxidant.  相似文献   

11.
The Schiff base hydrazone ligand HL was prepared by the condensation reaction of 7-chloro-4-quinoline with o-hydroxyacetophenone. The ligand behaves either as monobasic bidentate or dibasic tridentate and contain ONN coordination sites. This was accounted for be the presence in the ligand of a phenolic azomethine and imine groups. It reacts with Cu(II), Ni(II), Co(II), Mn(II), UO(2) (VI) and Fe(II) to form either mono- or binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, NMR, Mass, and UV-Visible spectra. The magnetic moments and electrical conductance of the complexes were also determined. The Co(II), Ni(II) and UO(2) (VI) complexes are mononuclear and coordinated to NO sites of two ligand molecules. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, the Ni(II) complex is octahedral while the UO(2) (VI) complex has its favoured heptacoordination. The Co(II), Mn(II) complexes and also other Ni(II) and Fe(III) complexes, which were obtained in the presence of Li(OH) as deprotonating agent, are binuclear and coordinated via the NNNO sites of two ligand molecules. All the binuclear complexes have octahedral geometries and their magnetic moments are quite low compared to the calculated value for two metal ions complexes and thus antiferromagnetic interactions between the two adjacent metal ions. The ligand HL and metal complexes were tested against a strain of Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

12.
Complexes of Co(II), Ni(II) and Cu(II) with the Schiff base (LH) derived from ceftazidime and salicylaldehyde were synthesized. The proposed structures of the new metal complexes based on the results of elemental analyses, molar conductivity, IR, DRUV and 1H NMR spectra, effective magnetic moment and thermal analysis were discussed. The surface morphology of Schiff base and metal complexes was studied by SEM. The composition of the metal complexes was ML2, where L is the deprotonated Schiff base ligand and M = Co(II), Ni(II) and Cu(II). IR spectral data indicated the Schiff base ligand being bidentately coordinated to the metallic ions with N and O atoms from azomethine and phenolic groups. All the complexes have square-planar geometry and are nonelectrolytes. The thermal analysis recorded that TG, DTG, DTA and DSC experiments confirmed the assigned composition and gave information about the thermal stability of complexes in dynamic air atmosphere. Theoretical investigation of the molecular structure of Schiff base ligand and its complexes was studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. The newly synthesized complexes were tested for in vitro antibacterial activity against selected Gram-negative and Gram-positive bacterial strains, and they exhibited an antibacterial activity superior to that of the Schiff base ligand.  相似文献   

13.
Some binary and ternary complexes of Ni(II) with arylideneanthranilic acids and Lewis bases have been prepared and characterized by elemental analyses, IR spectra and X-ray powder diffraction. On the basis of the IR spectra it was found that the Schiff bases used act as monobasic bidentate ligands except for the ortho-hydroxy derivative which acts as a dibasic tridentate ligand. From X-ray analysis it is concluded that the binary Ni(II) chelates are isostructural, and the ternary Ni(II) complexes are also isostructural.  相似文献   

14.
《中国化学会会志》2017,64(12):1524-1531
New complexes of nickel(II) and palladium(II) were synthesized using the ferrocenyl imine ligand, which was formed by the condensation of 2‐aminothiophenol and acetylferrocene. This bidentate Schiff base ligand was coordinated to the metal ions through the NS donor atoms. Monomeric complexes of nickel(II) and palladium(II) were synthesized by the reactions of the Schiff base ligand with nickel(II) and palladium(II) chloride in a 2:1 M ratio. In these complexes, the thiol group was deprotonated and coordinated to the metals. The molar conductivity values of the complexes in DMSO showed the presence of non‐electrolyte species. The fluorescence characteristics of the Schiff base ligand and its complexes were studied in DMSO. The synthesized complexes were characterized by FT‐IR, 1H NMR, UV–vis spectroscopy, elemental analysis, and conductometry. Furthermore, the binding interactions of the complexes with DNA were investigated by electronic absorption spectroscopy, and the intrinsic binding constant (K b) was calculated. Moreover, viscosity and melting temperature (T m) were investigated in order to further explore the nature of interactions between the complexes and DNA.  相似文献   

15.

Cu(II), Ni(II) and Zn(II) complexes with the Schiff base derived from 1,2-bis-(o-aminophenoxy)ethane with salicylaldehyde have been prepared. The complexes have been characterized by elemental analysis, magnetic measurements, 1H NMR, 13C NMR, UV, visible and IR spectra as well as conductance measurements. The ligand is coordinated to the central metal as a tetradentate ONNO ligand. The four bonding sites are the central azomethine nitrogen and aldehydic OH groups. The ligand was used for complexation studies. Stability constants were measured by a conductometric method. Furthermore, the stability constants for complexation between ZnCl2 and Cu(NO3)2 salts and N,N′-bis(salicylidene)-1,2-bis-(o-aminophenoxy)ethane (H2L) in 80% dioxane/water and pure methanol were determined from conductance measurements. The magnitudes of these ion association constants are related to the nature of the solvation of the cation and the complexed cation. The mobilities of the complexes are also dependent, in part, upon solvation effects.  相似文献   

16.
Ni(II) and Zn(II) complexes of the bidentate thiol ligand N-trans-cinnamylidene-2-mercaptoaniline which is obtained from trans-cinnamaldehyde and 2-mercaptoaniline were prepared and characterized by their IR absorption spectra, X-ray powder diffraction measurements, elemental analysis and 1H-NMR spectra. On the other hand, energy minimization studies of the molecules were carried out to obtain the most probable three-dimensional molecular conformations.The comparative 1H-NMR, IR, X-ray powder diffraction and energy minimization studies have shown that metal atoms are connected to the N and S atoms of Schiff bases and the complex have cis type fashion.  相似文献   

17.
A new Schiff base, {1-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-4-phenyl-2-thioxo-1, 2-dihydro-pyrimidin-5-yl}-phenyl-methanone, has been synthesized from N-amino pyrimidine-2-thione and 2-hydroxynaphthaldehyde. Metal complexes of the Schiff base were prepared from acetate/chloride salts of Cu(II), Co(II), Ni(II), Zn(II), and Cd(II) in methanol. The chemical structures of the Schiff-base ligand and its metal complexes were confirmed by elemental analyses, IR, 13C-NMR, 1H-NMR, API-ES, UV-Visible spectroscopy, magnetic susceptibility, and thermogravimetric analyses. The electronic spectral data and magnetic moment measurements suggest mononuclear octahedral and mononuclear or binuclear square planar structures for the metal complexes. In light of these results, it was suggested that this ligand coordinates to each metal atom by hydroxyl oxygen, azomethine nitrogen, and thione sulfur to form octahedral complexes with Cd(II) and Zn(II).  相似文献   

18.
Two new pyrimidine based NNS tridentate Schiff base ligands S-methyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL1] and S-benzyl-3-((2-S-methyl-6-methyl-4-pyrimidyl)methyl)dithiocarbazate [HL2] have been synthesised by the 1:1 condensation of 2-S-methylmercapto-6-methylpyrimidine-4-carbaldehyde and S-methyl/S-benzyl dithiocarbazate. A Ni(II) complex of HL1 and Co(III) and Fe(III) complexes of HL2 have been prepared and characterized by elemental analyses, molar conductivities, magnetic susceptibilities and spectroscopic studies. All the bis-chelate complexes have a distorted octahedral arrangement with an N4S2 chromophore around the central metal ion. Each ligand molecule binds the metal ion using the pyrimidyl and azomethine nitrogen and thiolato sulfur atoms (except in the nickel complex, one ligand molecule uses the thione sulfur in lieu of thiolato sulfur atom). In the Ni(II) complex, one of the ligand molecules behaves as a neutral tridentate and the other molecule functions as a uninegative tridentate, whereas in the Co(III) and Fe(III) complexes, the ligand molecules behave as monoanionic tridentate. All the complexes were analyzed by single crystal X-ray diffraction and significant differences concerning the distortion from an octahedral geometry of the coordination environment were observed.  相似文献   

19.
The tetradentate Schiff base ligand (SB), N,N′‐bis‐(2‐mercaptophenylimine)‐2,5‐thiophenedicarboxaldehyde was prepared via condensation of 2,5‐thiophene‐dicarboxaldehyde with 2‐aminothiophenol in a 1:2 molar ratio by conventional method. Additionally, its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and fully characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR, UV–Vis, ESR, ESI‐mass, conductivity and magnetic susceptibility measurements. Spectral studies suggested that, the Schiff base coordinate metal ions through the azomethine N‐ and deprotonated thiol S‐ atoms. Based on UV–Vis absorption and magnetic susceptibility data, tetrahedral geometry was assigned for both Co(II) and Zn(II) complexes, whereas on the other hand, square planar geometry for both Ni(II) and Cu(II) complexes. The Schiff base and its metal complexes were screened for their in vitro antimicrobial activity by minimum inhibitory concentration (MIC) method. Free radical scavenging activity of the novel compounds was determined by elimination of 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radicals. In addition, the interactions of the free ligand and its complexes with calf thymus DNA (CT‐DNA) were explored using absorption, emission and viscosity measurements techniques.  相似文献   

20.
We report the biological activity of the new Schiff base ligand H2L (H2L = 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl)bis(2,4-dichlorophenol)), its derived metal(II) complexes [Cu(L)] (1), [Co(L)] (2), [Ni(L)] (3) and [Zn(L)] (4), along with their structural characterizations by using various analytical and spectroscopic techniques. Electrochemical investigations showed that all of these Cu(II), Co(II) and Ni(II) complexes were reversibly reducible. Although the change of the number of unpaired electrons are different of the metal cations, they have an effect on the redox potentials of the Co(II)/(I), Ni(II)/(I) and Cu(II)/(I) couples. The 1H NMR and FTIR data concluded that the Schiff base ligand H2L acts as a hexadentate ligand coordinating with metal(II) ions through the oxygen atoms of the (COC), phenolic (COH) groups and nitrogen atom of the azomethine (CHN) group. UV-Visible absorption spectra studies clearly revealed the octahedral geometry of the prepared metal(II) complexes. Complexes 1 and 4 were found to be efficient in bringing about antimicrobial activities. The proposed mechanism of their antimicrobial activities has been discussed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed the remarkable cytotoxicity of complex 1 (IC50 = 17 ± 1.3 μg/mL) on human breast cancer MCF-7 cells than Schiff base ligand H2L and complexes 2–4. Moreover, AO/EB staining assay revealed cell death due to apoptosis in MCF-7 cells and the generation of ROS by the Schiff base ligand H2L and its derived metal(II) complexes 1–4 may be a possible cause for their cytotoxic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号