首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The synthesis, photophysical and photochemical properties of the 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}oxy) and 4-({3,4,5-tris-[2-(2-ethoxyethoxy)ethyloxy]benzyl}thio) zinc(ii) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, (1)H and (13)C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, fluorescence and triplet excited state quantum yields, and triplet state and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). The fluorescence of the complexes was quenched by benzoquinone (BQ). The effects of the substitution on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (6, 7 and 8) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The substituted Zn(II) phthalocyanines showed high triplet and singlet oxygen quantum yields. High singlet oxygen quantum yields are very important for Type II mechanism. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

2.
Photochemical and photophysical measurements were conducted on peripheral and non-peripheral tetrakis- and octakis(4-benzyloxyphenoxy)-substituted zinc phthalocyanines (1, 2 and 3). General trends are described for photodegradation, and fluorescence quantum yields, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulphoxide (DMSO) and toluene. The fluorescence of the complexes is quenched by benzoquinone (BQ), and fluorescence quenching properties are investigated in DMSO and toluene. The effects of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (1, 2 and 3) are also reported. Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications.  相似文献   

3.
The syntheses of new three phthalonitriles (1, 2 and 3), together with photophysical and photochemical properties of the resulting peripherally and non-peripherally tetrakis- and octakis 3,4-(methylendioxy)-phenoxy-substituted zinc phthalocyanines (4, 5 and 6) are described for the first time. Complexes 4, 5 and 6 have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, electronic spectroscopy and mass spectra. Complexes 4, 5 and 6 have good solubility in organic solvents such as CHCl3, DCM, DMSO, DMF, THF and toluene and are mainly not aggregated (except for complex 6 in DMSO) within a wide concentration range. General trends are described for singlet oxygen, photodegradation, fluorescence quantum yields, triplet quantum yields and triplet life times of these complexes in DMSO and toluene. Complex 4 has higher singlet oxygen quantum yields, fluorescence quantum yields, triplet quantum yields and triplet life times than complexes 5 and 6. The effect of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (4, 5 and 6) are also reported.  相似文献   

4.
A complete set of platinum(II) solketal substituted phthalocyanines has been synthesized and characterized. To evaluate their potential as Type II photosensitizers for photodynamic therapy, comparative studies of their photophysical and photochemical properties with analogous zinc(II) series have been achieved: electronic absorption, fluorescence quantum yields, lifetimes, and fluorescence quenching by benzoquinone, as well as singlet oxygen generation and photodegradation. It appears that platinum(II) phthalocyanines are worth being used as Type II photosensitizers, as they exhibit good singlet oxygen generation and appropriate photodegradation.  相似文献   

5.
The synthesis, photophysical and photochemical properties of the tetra- and octa-poly(oxyethylene)substituted zinc (II) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy, electronic spectroscopy and mass spectra. General trends are described for photodegradation, singlet oxygen, triplet state and fluorescence quantum yields, and triplet and fluorescence lifetimes of these compounds in dimethylsulfoxide (DMSO). Photophysical and photochemical properties of phthalocyanine complexes are very useful for PDT applications. The effects of the substituents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (3a, 5a and 6a) are also reported. The singlet oxygen quantum yields (Phi(Delta)), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.60 to 0.72. Thus, these complexes show potential as Type II photosensitizers. The fluorescence of the complexes was quenched by benzoquinone (BQ).  相似文献   

6.
The new tetra-non-peripherally benzenesulfonic acid-substituted hydrophilic gallium chloride and indium chloride phthalocyanine complexes have been synthesized by cyclotetramerization of 4-(2,3-dicyanophenyl)benzenesulfonic acid (1). The newly synthesized phthalocyanines have been characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, mass and UV–vis spectroscopy techniques. The water-soluble gallium(III) phthalocyanine derivative (2) was aggregated in aqueous media but was fully disaggregated in the presence of a surfactant Triton X-100. The incorporation of sulfonate moieties of the phthalocyanine macrocycle provides hydrophilic character to the new compounds, which is useful for drug administration and serves as crucial in PDT application. So, the photochemical properties (singlet oxygen quantum yields and photodegradation quantum yields) and photophysical properties (fluorescence behavior) of the complexes were reported in different solutions (DMSO and water). The results of spectral measurements showed that both np-GaPc (2) and np-InPc (3) can be used as sensitizers in PDT because of their singlet oxygen efficiencies.  相似文献   

7.
The new thiohexanoic acid substituted zinc phthalocyanine was synthesized and characterized by FT-IR, 1H–NMR, electronic spectroscopy, and mass spectrometry as well as DFT calculation studies. The photochemical properties (singlet-oxygen quantum yields and photodegradation quantum yields) and photophysical properties (fluorescence quantum yields and fluorescence behavior) of the compound were studied in dimethylsulfoxide (DMSO), dimethylformamide (DMF) and tetrahydrofuran (THF). Singlet-oxygen quantum yields ranged from 0.29 to 0.43. However, energy-minimized structure, vibrational frequency, electronic distribution and molecular orbitals were obtained by DFT calculations which were supported by experimental results.  相似文献   

8.
The synthesis and characterization of new peripherally tetra-4-benzyloxybenzoxy substituted metal-free, zinc and lead phthalocyanines are described for the first time in this study. The influence of various organic solvents and the nature of the central metal ion on the spectroscopic, photophysical and photochemical properties has been investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds in different solvents. Photophysical and photochemical properties of phthalocyanine compounds are very useful for photodynamic therapy applications. Especially high singlet oxygen quantum yields are very important for Type II mechanism. The studied phthalocyanine compounds showed good singlet oxygen generation and these compounds show potential as Type II photosensitizers. The fluorescences of the studied compounds are effectively quenched by 1,4-benzoquinone in different solvents.  相似文献   

9.
The synthesis, photophysical and photochemical properties of the tetra-substituted aryloxy gallium(III) and indium(III) phthalocyanines are reported for the first time. General trends are described for photodegradation, singlet oxygen, fluorescence, and triplet quantum yields and triplet lifetimes of these compounds. The introduction of phenoxy and tert-butylphenoxy substituents on the ring resulted in lowering of fluorescence quantum yields and lifetimes, and triplet quantum yields, and an increase of kIC, kISC, and kF. Photoreduction of the complexes was observed during laser flash photolysis. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.41 to 0.91. Thus, these complexes show potential as Type II photosensitizers.  相似文献   

10.
This study reports the 3 new phthalonitrile derivatives, namely 4, 5 Bis-[4-(4-bromophenoxy) phenoxy] phthalonitrile ( 1 ), 4,5 Bis-[4-(4-chlorophenoxy) phenoxy]phthalonitrile ( 2 ), and 4, 5 Bis[4-(4-fluorophenoxy) phenoxy] phthalonitrile ( 3 ). Their octa-substituted zinc phthalocyanines ( 4 , 5 , 6 ) are reported for the first time in this study. The resulting compounds were characterized by utilizing some spectroscopic methods, such as UV-Vis, 1HNMR, FT-IR spectroscopy, as well as mass spectraand elemental analysis. To show photosynthesizer’s potential, emission (F F ), singlet oxygen (1O2), and photodegradation quantum yields (F∆, Fd) of octa-peripherally phthalocyanines (Pcs) were performed in the solutions, such as biocompatible solvent DMSO (dimethyl sulfoxide) as well as DMF (dimethylformamide) and THF (tetrahydrofuran). Solvent and octa-peripherally binding effect of the halogen (Br, Cl, F) terminated phenoxy-phenoxy groups on phthalocyanine rings for photophysicochemical properties ( 4 , 5 , and 6 ) were compared with the tetra-peripherally and tetra nonperipherally substituted derivatives. The new dyes ( 4 to 6 ) may be evaluated in photodynamic therapy (PDT) of cancer as photosensitizers due to efficient 1O2 from 0.55 to 0.75.  相似文献   

11.
The electronic nature of substituents attached to the 4‐aryl moiety of 1,4‐dihydropyridines strongly affects the photophysical and photochemical behavior of these family of compounds. The presence of an electron donor substituent on the 4‐aryl moiety (or the absence of electron‐withdrawing ones) modifies the luminescence lifetimes (τ < 100 ps) and diminishes the photodecomposition quantum yields. For electron‐withdrawing substituents, the photodegradation quantum yield is affected by the media, changing more than two orders of magnitude as the polarity is increased. Studies in micellar media allow us to conclude that 4‐aryl‐1,4‐dihydropyridines are located near to the interface; however, the surface charge of micelles has no effect on the photodegradation rate constant or the photoproducts profile. The main conclusion of this work is that the photolability of 4‐aryl‐1,4‐dihydropyridines can be significantly reduced by the incorporation of antioxidant moieties.  相似文献   

12.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

13.
Mixed cyclization of 3-mono-, 4-mono-, or 4,5-di(porphyrinated) phthalonitrile compounds 2, 3, or 6 and unsubstituted phthalonitrile with the half-sandwich complex [EuIII(acac)(Pc)] (Pc=phthalocyaninate, acac=acetylacetonate) as the template in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in n-pentanol afforded novel porphyrin-appended europium(III) bis(phthalocyaninato) complexes 7-9 in 30-40% yield. These mixed tetrapyrrole triads and tetrad were spectroscopically and electrochemically characterized and their photophysical properties were also investigated with steady-state and transient spectroscopic methods. It has been found that the fluorescence of the porphyrin moiety is quenched effectively by the double-decker unit through an intramolecular photoinduced electron-transfer process, which takes place in several hundred femtoseconds, while the recombination of the charge-separated state occurs in several picoseconds. By using different phthalocyanines containing different numbers of porphyrin substituents at the peripheral or nonperipheral position(s) of the ligand, while the other unsubstituted phthalocyanine remains unchanged in these double-deckers, the effects of the number and the position of the porphyrin substituents on these photophysical processes were also examined.  相似文献   

14.
The non-peripherally (np-QZnPc) and peripherally (p-QZnPc) tetrakis-[7-oxo-(3-[(2-diethylaminomethyliodide)ethyl)]-4-methylcoumarin]-phthalocyaninatozinc complexes have been prepared by quaternization of non-peripherally and peripherally tetrakis[7-oxo-(3-[(2-diethylamino)ethyl)]-methylcoumarin] phthalocyaninato zinc complexes with methyliodide in dimethylsulfoxide (DMSO). The new quaternized zinc phthalocyanine complex (np-QZnPc) has been characterized by elemental analysis, MALDI-TOF, IR and UV-vis spectral data. The photophysical and photochemical properties of the peripherally and non-peripherally quaternized tetrakis-3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin substituted zinc phthalocyanines are reported. The effects of the position of the substituents and the aggregation of the phthalocyanine molecules on the photophysical and photochemical properties are also investigated. General trends are described for photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes for complexes np-ZnPc/p-ZnPc in DMSO and for complexes np-QZnPc/p-QZnPc in DMSO, phosphate buffered solution (PBS) and PBS+Triton-X 100 solutions. The fluorescence of the tetra-substituted quaternized zinc phthalocyanine complexes (np-QZnPc/p-QZnPc) are effectively quenched addition of 1,4-benzoquinone (BQ) and this study also presented the ionic zinc phthalocyanine complexes strongly bind to bovine serum albumin (BSA).  相似文献   

15.
The synthesis and characterization of new peripherally tetra-3,5-dimethylpyrazole-1-methoxy substituted metal-free (4), zinc (5), nickel (6), cobalt (7), copper (8) and lead (9) phthalocyanines are described for the first time in this study. The photophysical (fluorescence quantum yields and fluorescence lifetimes) and photochemical (photodegradation and singlet oxygen quantum yields) properties of metal-free (4), zinc (5) and lead (9) phthalocyanines are studied in dimethylsulfoxide (DMSO). Nickel (6), cobalt (7) and copper (8) phthalocyanines (6-8) did not evaluate for this purpose due to transition metal and paramagnetic behavior of central metals in the phthalocyanine cavity. The fluorescence quenching behavior of metal-free (4), zinc (5) and lead (9) phthalocyanines are also investigated. The fluorescence emissions of these phthalocyanines are effectively quenched by 1,4-benzoquinone in DMSO.  相似文献   

16.
The nitrobenzofurazan (NBD) moiety has gained tremendous popularity over the last decades due to its fluorogenic nature. Indeed, upon interaction with aliphatic amines, it generates a stable fluorescent adduct, which has been used for protein and lipid labeling. In fact the 4‐amino substituted NBD belongs to the broad family of intramolecular charge transfer molecules, with the amino group acting as an electron donor upon photoexcitation, and the nitro group as an electron acceptor. Although the singlet excited state of 4‐amino NBD derivatives has been abundantly studied, investigation of its triplet manifold is scarce and even the absence of intersystem crossing for this type of molecules has been suggested. However, intramolecular charge transfer molecules are known to undergo intersystem crossing and high phosphorescence quantum yields have been reported in a nonpolar solvent. In the present paper, we have investigated the photophysical and photochemical properties of N‐hexyl‐7‐nitrobenzo[c][1,2,5]xadiazole‐4‐amine. We have shown the existence of a triplet state for this molecule in cyclohexane via nanosecond laser flash photolysis. Interestingly, deactivation of the triplet state leads to photoproducts formation, which are only present in the absence of oxygen.  相似文献   

17.
The synthesis and characterization of new peripherally and non-peripherally tetra-substituted metal-free and zinc(II) phthalocyanines with 2-, 3- and 4-phenyloxyacetic acid functionalities are described for the first time in this study. The new compounds have been characterized by elemental analysis, FT-IR, UV-Vis, MALDI-TOF and 1H-NMR spectra. Photodegradation, singlet oxygen and fluorescence quantum yields, and fluorescence lifetimes of these compounds are studied in dimethylformamide (DMF). The influence of the substituent position on the phthalocyanine framework (non-peripherally or peripherally), central metal ion (metal-free or zinc) and the position of the COOH group (2-, 3- or 4-position on the phenyloxyacetic acid) on the spectroscopic, photophysical and photochemical properties have been investigated. Non-peripherally zinc(II) phthalocyanines (1b and 2b) and peripherally zinc(II) phthalocyanine (4b) gave good singlet oxygen quantum yields (ΦΔ) (0.37, 0.39 and 0.38, respectively) which indicate the potential of the complexes as photosensitizers in applications of PDT.  相似文献   

18.
In this work, peripheral or nonperipheral tetra‐[4‐(9H‐carbazol‐9‐yl)phenoxy] substituted cobalt(II), manganese (III) phthalocyanines were synthesized for the first time. Their acetylcholinesterase from Electrophorus electricus (AChE), butyrylcholinesterase equine serum (BuChE), and α‐glucosidase Saccharomyces cerevisiae inhibition were investigated spectrophotometrically. Finally, in vitro cytotoxicities of the compounds were investigated on human neuroblastoma (SH‐SY5Y) cell line using MTT cell viability assay. The compounds inhibited to enzymes in the range of 7.39 ± 0.25–35.29 ± 2.49 μM with IC50 values for AChE and 14.38 ± 0.66–58.02 ± 4.94 μM for BuChE as compared with galantamine, which used as a positive control. For α‐glucosidase, all compounds had stronger inhibition action than acarbose according to the IC50 values. The IC50 values of N? Co and N? Mn were found to be 3.05 ± 0.10 and 15.82 ± 1.85 μM, respectively. The results of cytotoxicity showed that the IC50 values were above 100 μM showing the compounds had low cytotoxic action against SH‐SY5Y cell line for 24 h. Overall, carbazole substituted nonperipheral compounds can be considered as a potential agent for the treatment of Alzheimer's diseases and diabetes mellitus.  相似文献   

19.
Treatment of 3- or 4-nitrophthalonitrile with 1,2:5,6-di-O-isopropylidene-alpha-d-glucofuranose or 1,2:3,4-di-O-isopropylidene-alpha-d-galactopyranose in the presence of K(2)CO(3) gave the corresponding glycosubstituted phthalonitriles. These precursors underwent self-cyclisation, or mixed-cyclisation with the unsubstituted phthalonitrile, to afford the tetra- or mono-glycosylated zinc(ii) phthalocyanines, respectively. As shown by absorption spectroscopy, these compounds were not significantly aggregated in organic solvents, giving a weak to moderate fluorescence emission. Upon irradiation these compounds could sensitise the formation of singlet oxygen in DMF, with quantum yields in the range of 0.40-0.66. The in vitro photodynamic activities of these compounds against HepG2 human hepatocarcinoma and HT29 human colon adenocarcinoma cells were also studied. The mono-glycosylated phthalocyanines exhibited significantly higher photocytotoxicity compared with the tetra-alpha-glycosylated analogues, having IC(50) values down to 0.9 muM. The tetra-beta-glycosylated counterparts were essentially inactive. The lower photocytotoxicities of the tetra-glycosylated phthalocyanines are in line with their lower cellular uptake and/or higher aggregation tendency as reflected by weaker intracellular fluorescence, and lower efficiency at generating intracellular reactive oxygen species. For the mono-glycosylated phthalocyanines, the higher uptake can be attributed to their hydrophilic saccharide units, which increase the amphiphilicity of the macrocycles.  相似文献   

20.
4,5-Bis(2-(4-(4-methoxybenzylamino)-5-oxo-3-p-tolyl-4,5-dihydro-1H-1,2,4-triazol-1-yl)ethoxy)-substituted zinc(II) phthalocyanine (4) was synthesized from a phthalonitrile derivative (3). The compounds were characterized by several spectral methods such as electronic absorption, FT-IR, 1H NMR, 13C NMR, mass spectrometry, and elemental analyses. The photophysical and the photochemical properties of 4 were investigated in DMSO and DMF. The solvent effect on the photochemical and photophysical properties for 4 is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号