首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Uric acid concentration in human bodily fluids is an important marker for disorders such as gout, pre‐eclamsia or cardiovascular disease. However, currently used methods for its detection either lack sensitivity or require sophisticated, bulky and expensive equipment. In this work, we show that by using surface‐enhanced Raman scattering spectroscopy (SERS) on dried Ag colloidal drops and with 1064 nm excitation, concentrations of uric acid in aqueous solutions down to 10−6 M can be detected. Such sensitivity is sufficient for medical applications as concentration of uric acid in various bodily fluids are in the range of 10−3–10−4 M. Drying of the colloidal drops is known to result in the formation of ‘coffee‐ring’ structures that allow obtaining high enhancements but poor reproducibility. Here, the formation of the structures was avoided by choosing aluminum oxide as a base substrate and by controlling environment conditions. Despite the fact that variations of signal enhancement from sample to sample prevent quantitative analysis from being performed, the results of this work imply that strict control of sample preparation conditions could lead to obtaining reproducible SERS enhancements. Results of density functional theory calculations of uric acid tautomer – five‐atom silver cluster complexes performed for the first time show that the differences between Raman and SERS spectra of uric acid can be mainly explained by tautomerization of the molecule and its bonding to the silver surface. Assignment of spectral bands is important for correct SERS signal interpretation and detection of uric acid in biological fluids in the future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
We achieved single‐molecule surface‐enhanced Raman scattering (SM‐SERS) spectra from ultralow concentrations (10−15 M) of fullerene C60 on uniformly assembled Au nanoparticles. It was found that resonant excitation at 785 nm is a powerful tool to probe SM‐SERS in this system. The appearance of additional bands and splitting of some vibrational modes were observed because of the symmetry reduction of the adsorbed molecule and a relaxation in the surface selection rules. Time‐evolved spectral fluctuation and ‘hot spot’ dependence in the SM‐SERS spectra were demonstrated to result from the single‐molecule Raman behavior of the spherical C60 on Au nanoparticles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Conjugate acid–base forms of the drug metoclopramide were investigated by Raman spectroscopy in aqueous solutions and by surface‐enhanced Raman scattering (SERS), when the molecules were adsorbed on colloidal silver surfaces. Raman spectra were recorded at pH values below 8, metoclopramide being poorly water soluble at higher pH values. The SERS spectra of metoclopramide were recorded in the 3–11 pH range, even in spite of its low solubility at basic pH values. The Raman and SERS spectra were assigned by means of density functional theory (DFT) calculations. By monitoring several SERS marker bands, the protonated, neutral or the coexistence of both molecular species adsorbed on the colloidal silver particles could be evidenced. The adsorbate orientation was deduced to be perpendicular to the metal surface for the protonated molecular species and tilted for the neutral metoclopramide molecular species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a colloidal assembly of apparently randomly adhering Ag spheres with diameters of approximately 20 – 25 nm. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces were analyzed in this study. Briefly, it was shown that Pip, in generally in vertical orientation, and Thi, in the edge‐on position, relative to the colloidal Ag surface interacted with this surface through their lone electron pairs on the nitrogen and sulfur atoms, respectively. The imide bond of the X‐Pro peptide linkage and the guanidine group of Arg were involved in the adsorption process. In addition, it was demonstrated that the specific differences in the amino acid sequences slightly influenced the mode of adsorption. For example, Aaa in Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK and D‐Phe (vertical with respect to the colloidal Ag surface) in [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK assisted in the adsorption of these peptides onto the colloidal Ag particles. To discuss these spectral alterations due to the different surface adsorption mechanisms of these peptides, the spectral changes were analyzed according to the adsorption process and Fourier‐transform‐Raman spectra. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The Raman and surface‐enhanced Raman scattering (SERS) spectra of l ‐proline (Pro) and trans‐4‐hydroxy‐ l ‐proline (Hyp) were recorded. SERS spectra were obtained on colloidal Ag prepared by reduction with hydroxylamine. Allowing sufficient time for Pro and Hyp to adjust in the colloidal solution resulted fundamentally in obtaining unique and reproducible SERS spectra. Hyp stabilizes on the surface more rapidly than Pro. The spectral analysis indicates that Pro interacts with the Ag surface through the carboxylate group. The interaction of Hyp with the metal surface occurs through the amino, methylene and carboxylate moieties of the molecule. The spectroscopic results are supported by quantum chemical calculations, performed using extended Hückel theory (EHT) of the title compounds interacting with an Ag cluster model. The assignment of the Raman bands was supported by a normal coordinate analysis performed through Becke, three‐parameter, Lee–Yang–Parr/6‐311 G* + calculations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Infrared, Raman and surface‐enhanced Raman scattering (SERS) spectra of 3‐(1‐phenylpropan‐2‐ylamino)propanenitrile (fenproporex) have been recorded. Density functional theory (DFT) with the B3LYP functional was used for optimizations of ground state geometries and simulation of Raman and SERS vibrational spectra of this molecule. Bands of the vibrational spectra were assigned in detail. The comparison of SERS spectra obtained by using colloidal silver and gold nanoparticles with the corresponding Raman spectrum reveals enhancement and shifts in bands, suggesting a possible partial charge‐transfer mechanism in the SERS effect. Information about the orientation of fenproporex on the nanometer‐sized metal structures is also obtained. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Here, we report the nature of new di‐α‐amino (L1–L3) and α‐amino‐α‐hydroxyphosphinic (L4–L6) acids, which are considered potential inhibitors of the aminopeptidase N, adsorbed on a colloidal silver surface by means of surface‐enhanced Raman scattering (SERS) spectroscopy. In order to reveal the adsorption mechanism of these species from their SERS spectra, Fourier‐transform Raman (FT‐RS) spectra of these nonadsorbed molecules were measured. By examining the enhancement, shift in wavenumbers, and changes in breadth of the SERS bands due to the adsorption process, we revealed that the tilted compounds interact with the colloidal silver substrate mainly through the benzene ring, amino group, and phosphinic moiety in the following way. The benzene ring of L2 and L3 is ‘standing up’ on the colloidal silver surface, and the C N bond is almost vertical to it, while the tilt angle between the O PO bond and this surface is greater than 45°. On the other hand, for L1, L4, and L5, the aromatic ring and C N bond are arranged more or less tilted, and the tilt angle between the O PO bond and the silver substrate is smaller than 45°. The elongation of the bond to the benzene ring, the L6 case, produces an almost horizontal orientation of the benzene ring and the O PO bond on the silver nanoparticles. For these ligands, the complement inhibition IC50 tested in vitro using porcine kidney leucine aminopeptidase was correlated mainly with the behavior of the O PO and C CH N fragments on the silver surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We have been able to observe the surface‐enhanced Raman scattering (SERS) from 4‐mercaptopyridine (4‐Mpy) molecules adsorbed on ZnO nanocrystals, which display 103 enhancement factors (EFs). An excitation wavelength‐dependent behavior is clearly observed. Another molecule BVPP is also observed to have surface‐enhanced Raman signals. The chemical enhancement is most likely responsible for the observed enhancement, since plasmon resonances are ruled out. The research is important not only for a better understanding of the SERS mechanism, but also for extension of the application of Raman spectroscopy to a variety of adsorption problems on a semiconductor surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The highly fluorescent natural dye berberine can be easily identified in microscopic textile samples by surface‐enhanced Raman spectroscopy employing citrate‐reduced Ag colloid. The ordinary Raman (OR) and SERS spectra of berberine are presented and discussed in the light of a DFT calculation. Using FT‐Raman and FT‐SERS we could reliably compare relative intensity shifts and investigate the adsorption geometry of berberine on Ag nanoparticles. The significant enhancement in the FT‐SERS spectrum of the out‐of‐plane ring system bending deformation mode at 729 cm−1 relative to a group of in‐plane vibrations at around 1500 cm−1 was interpreted as evidence of a ‘flat‐on’ adsorption geometry. SERS was successfully used to identify berberine in silk fiber samples coated with colloidal Ag following a pretreatment with HCl vapor. The SERS method allowed us to detect berberine in a microscopic sample of a single silk fiber from a severely degraded and soiled 17th Century Chinese textile fragment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Novel surface enhanced Raman spectroscopy (SERS) platforms have been prepared and used for the bacteria detection. Unlike typical, expensive SERS platforms prepared from gold or silver, the presented platforms are prepared using copper. A new, simple, cost‐efficient and fast high pressure method is used for platform fabrication, through the decomposition of copper hydride. The platform enhancement factors are verified using the malachite green isothiocyanate as a standard. The platforms exhibit extremely high SERS enhancement factors depending on pressure used for their preparation. The calculated enhancement factors have been found in the range between 1.5 × 106 and 4.6 × 107. The SERS spectra reproducibility is established both across a single platform and among different platforms. The average spectral correlation coefficient (Γ) has been calculated to be 0.82. Fully characterized SERS platforms have then been used for detecting Staphylococcus aureus bacteria. These novel platforms have great potential to become excellent tools for biological or medical diagnostics as an alternative to more common silver or gold SERS platforms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The adsorption of cationic and neutral R6G molecules on Au nanoparticles was elucidated by surface enhanced Raman scattering (SERS). The steric hindrance at hydroethyl amino (‐N(H)Et) groups in R6G was evidenced by the observation that R6G+ adsorb on as‐prepared gold nanoparticles (AuNPs) only with electrostatic forces, in contrast to the electrostatic and chemical adsorption of R123+ with dihydro amino (‐NH2) groups on as‐prepared AuNPs. Large steric hindrance at the amino groups in R6G yielded saturated coverage of 700 molecules/AuNP for R6G+ significantly fewer than 1000 molecules/AuNP for R123+. In addition, neutral R6G0 on AuNPs showed markedly enhanced peaks at 1200–1600 cm−1, which were not observed in Raman spectra of R6G0 in bulk solution, and also in SERS of R6G+ on AuNPs. These bands are attributed to vibrational modes of an outer phenyl ring and ethyl amino groups, which are vertical to a xanthene plane, on the basis of theoretical analysis of molecular vibrations. Thus, Raman scattering of these bands is enhanced under an inclined orientation of R6G0 molecules chemisorbed on AuNPs via lone pair electrons at amino groups. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Local pH environment has been considered to be a potential biomarker for tumor diagnosis because solid tumors contain highly acidic environments. A pH‐sensing nanoprobe based on surface‐enhanced Raman scattering (SERS) using nanostars under near‐infrared excitation has been developed for potential biomedical applications. To theoretically investigate the effect of protonation state on SERS spectra of p‐mercaptobenzoic acid (pMBA), we used the density functional theory (DFT) with the B3LYP functional to calculate Raman vibrational spectra of pMBA‐Au/Ag complex in both protonated and deprotonated states. Vibrational spectral bands were assigned with DFT calculation and used to investigate SERS spectral changes observed from experiment when varying pH value between five and nine. The SERS peak position of pMBA at ~1580 cm−1 was identified to be a novel pH‐sensing index, which has small but noticeable downshift with pH increase. This phenomenon is confirmed and well‐explained with theoretical simulation. The study demonstrates that SERS is a sensitive tool to monitor minor structural changes due to local pH environment, and DFT calculations can be used to investigate Raman spectra changes associated with minor differences in molecular structure. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A method employing photochemical hole burning, previously developed to measure the distribution of Raman enhancement factors on a nanostructured substrate for surface‐enhanced Raman scattering, is used to compare the enhancement distributions of benzenethiol adsorbed on substrates optimized for 532 nm laser excitation consisting of close‐packed (CP) or nonclose‐packed (NCP) nanospheres. The ensemble‐averaged Raman enhancement factor was 2.8 times smaller for the NCP substrate. The measured distributions revealed additional information. For instance, 92% of the molecules on the CP substrate and 93.6% of the molecules on the NCP substrate had Raman enhancements below average. The minimum enhancements on both substrates were ~104, but on the NCP substrate the maximum enhancement was 1.2 × 108, whereas on the CP substrate the maximum was 2 × 1010. The Ag‐coated nanospheres form hemisphere‐on‐cylinder mushroom‐like structures on both lattices, but on the NCP lattice, one third of the molecules are on the flat regions between the mushrooms. The flats on the NCP lattice have enhancements of ~104, showing they are part of a resonant plasmonic structure. The highest NCP enhancements of ~108 are tentatively associated with regions at the bases of the mushrooms, whereas the highest CP enhancements of 2 × 1010 are tentatively associated with gaps between nanospheres where 0.0025% of the molecules reside. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Fourier‐transform infrared (FT‐IR), Raman (RS), and surface‐enhanced Raman scattering (SERS) spectra of β‐hydroxy‐β‐methylobutanoic acid (HMB), L ‐carnitine, and N‐methylglycocyamine (creatine) have been measured. The SERS spectra have been taken from species adsorbed on a colloidal silver surface. The respective FT‐IR and RS band assignments (solid‐state samples) based on the literature data have been proposed. The strongest absorptions in the FT‐IR spectrum of creatine are observed at 1398, 1615, and 1699 cm−1, which are due to νs(COOH) + ν(CN) + δ(CN), ρs(NH2), and ν(C O) modes, respectively, whereas those of L ‐carnitine (at 1396/1586 cm−1 and 1480 cm−1) and HMB (at 1405/1555/1585 cm−1 and 1437–1473 cm−1) are associated with carboxyl and methyl/methylene group vibrations, respectively. On the other hand, the strongest bands in the RS spectrum of HMB observed at 748/1442/1462 cm−1 and 1408 cm−1 are due to methyl/methylene deformations and carboxyl group vibrations, respectively. The strongest Raman band of creatine at 831 cm−1w(R NH2)) is accompanied by two weaker bands at 1054 and 1397 cm−1 due to ν(CN) + ν(R NH2) and νs(COOH) + ν(CN) + δ(CN) modes, respectively. In the case of L ‐carnitine, its RS spectrum is dominated by bands at 772 and 1461 cm−1 assigned to ρr(CH2) and δ(CH3), respectively. The analysis of the SERS spectra shows that HMB interacts with the silver surface mainly through the  COO, hydroxyl, and  CH2 groups, whereas L ‐carnitine binds to the surface via  COO and  N+(CH3)3 which is rarely enhanced at pH = 8.3. On the other hand, it seems that creatine binds weakly to the silver surface mainly by  NH2, and C O from the  COO group. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
We investigated the interfacial structures of various aromatic (each compound contains one or two phenyls) di‐α‐amino ( L1 – L3 ) and α‐amino‐α‐hydroxyphosphinic ( L4 – L6 ) acids immobilized onto an electrochemically roughened silver electrode surface in an aqueous solution using surface‐enhanced Raman scattering (SERS). These structures were compared to those on a colloidal silver surface to determine the relationship between adsorption strength and geometry. The presence of an enhanced ν19a ring band in the SERS spectra of L6 , L2 , and L3 on the electrode indicated that the benzene rings of those molecules interact with the electrode surface through localized CC bond(s). We observed significant band broadening of the benzene ring modes for all α‐hydroxyphosphinic acids on both substrates, except for L1 deposited onto the electrode surface. This suggests the possibility of direct interaction between the ring and Ag, although the benzene ring–surface π overlap is weaker for the colloidal silver than for the Ag electrode. The downward shift in wavenumber and alternations in the enhancement of a ν12 ring band indicate a general increase of tilt angle on both silver substrates in the order L3 < L4 < L5 < L6 . The altered enhancement of the bands due to the vibrations of the  NH2 and O PO fragments, a finding observed on both silver substrates, strongly suggests that the groups interact with different strength and geometry with these substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the surface‐enhanced Raman scattering (SERS) spectra of the potent B2 bradykinin receptor antagonists, [D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, Aaa[D‐Arg0,Hyp3,Thi5,8,L‐Pip7]BK, [D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, and Aaa[D‐Arg0,Hyp3,Thi5,D‐Phe7,L‐Pip8]BK, were measured when immobilized onto a highly specific electrochemically roughened SERS‐active Ag substrate characterized by the formation of a 50 – 150 nm Ag islands on its surface. The observed SERS bands corresponding to different vibrational modes of the molecule, attached to or near Ag, and the variations in these bands resulting from competitive interactions of the functional groups of the peptides with the SERS‐active Ag surfaces and reorientation occurring over time of adsorption were analyzed in this study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Roughened nickel electrode surfaces have been demonstrated to exhibit a moderate enhanced Raman scattering effect with an enhancing factor of about 104, which is not suitable in some cases for further inhibition adsorbates study. We reported here a new modified roughening procedure of nickel electrodes, by which a high S/N ratio surface‐enhanced Raman spectroscopy (SERS) of pyridine was obtained. At least two major advantages were found for the modified roughening methods: (1) enhancing factor was improved by a factor of about 10, (2) SERS‐active sites were distributed uniformly on the Ni surfaces. Potential‐dependent SERS spectra of a candidate inhibitor molecule benzotriazole (BTAH) adsorbed onto nickel electrodes were briefly presented for verifying the feasibility of the modified roughening method in this paper. Results showed that BTAH molecules were adsorbed on the nickel electrodes in neutral molecule form at more negative potentials and a polymer‐like film with the composition of [Nin(BTA)p]m formed on the nickel electrodes with the positive shift of potentials. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号