首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fiber-coupled diode-single-end-pumped Nd:YVO4 laser with an Nd:YVO4 crystal of 0.3 at% doping concentration and 3×3×10 mm3 dimensions was reported. 14.850 W of continuous-wave output power in an M2 factor of 1.12 was obtained under pump power of 27.365 W, with an optical conversion efficiency of 60.49%, and a slope efficiency of 64.5%.  相似文献   

2.
X. Yu  R. P. Yan  M. Luo  F. Chen  X. D. Li  J. H. Yu 《Laser Physics》2009,19(10):1960-1963
We demonstrated a diode-end-pumped continuous-wave 914 nm laser using a novel grown-together YVO4/Nd:YVO4 crystal for the first time. A maximum output power at 914 nm of 7.5 W with an optical-optical efficiency of 16.3% and a slope efficiency of 24.3% was obtained when the incident pump power was 46.2 W. The beam quality factor M 2 was 3.2 at the output power of 6.0 W. The quality and specification of the grown-together composite YVO4/Nd:YVO4 crystal should be improved. Meanwhile, energy-transfer upconversion spectrum of the composite YVO4/Nd:YVO4 crystal laser was also investigated.  相似文献   

3.
This paper reports on efficient generation of cw laser radiation at 0.9 and 1.3 μm in different neodymium doped laser hosts. The thermal, mechanical and optical properties as well as the laser performance of Nd:YAG, Nd:YAlO3, Nd:YVO4 and Nd:GdVO4 are studied in numerical simulations as well as in experimental investigations. For example an output power of more than 4.0 W is generated in Nd:YVO4 at the 914 nm 4F3/24I9/2 transition using a pump power of 19 W. In Nd:GdVO4 more than 6.0 W are obtained at the 1342 nm 4F3/24I13/2 laser transition by using a pump power of 19.3 W. The spatial beam quality of both lasers is diffraction limited with an M2 value of less than 1.1. PACS  42.70.Hj; 42.55.Xi; 42.60.Pk  相似文献   

4.
With an undoped YVO4 crystal as a Raman shifter, we substantially improved the reliability and the output performance of an actively Q-switched 1176-nm Nd:YVO4 Raman laser. With an incident pump power of 18.7 W, the average power is greater than 2.6 W at 80 kHz. The pulse width of the pulse envelope is shorter then 5 ns with mode-locked modulation. With an incident pump power of 12.7 W, the pulse energy and peak power is higher than 43 μJ and 14 kW at 40 kHz. PACS 42.55.Ye; 42.55.Xi; 42.60.Gd  相似文献   

5.
Continuous-wave operation of a diode-pumped Nd:YVO4 laser with self-frequency Raman conversion is demonstrated. The threshold of Raman generation was measured to be 1.3 W of laser diode power. The maximum output power of Stokes radiation at the wavelength of 1177 nm was up to 50 mW at a laser diode pump power of 2.3 W, corresponding to the slope efficiency of 5%. The beam quality M2 of the Stokes radiation was about 1.4. The fluctuations of the Stokes power were minimised down to 4%. PACS 42.55.Ye; 42.60.Pk; 42.65.Dr  相似文献   

6.
We have demonstrated an efficient diode-pumped passively Q-switched Nd:YVO4 laser at 1342 nm by using an uncoated Co2+:LaMgAl11O19 (Co2+:LMA) crystal as the saturable absorber. With the absorbed pump power of 11.7 W, the pulse width could be as low as 42 ns, with a corresponding average output power of 580 mW. At around 40 kHz repetition rate, the energy of a single Q-switched pulse was estimated to be about 14.5 μJ and the peak power was 346 W. The passive Q switching operation for the Co2+:LMA in different polarization states was also investigated. PACS 42.55.-f; 42.55.Xi; 42.60.Gd; 42.70.Mp  相似文献   

7.
We report a high repetition rate Q-switched Nd:YVO4/Cr4+:YAG micro laser with small pump power. Unwanted defects in pulse train, which are inherently large in passively Q-switched laser, was simply minimized by controlling temperature of Nd:YVO4/Cr4+:YAG medium. When T 0 = 90% Cr4+:YAG and R OC = 90% output coupler were used, Q-switched Nd:YVO4/Cr4+:YAG micro laser showed the optimum output; maximum output power of 58 mW, optical-to-optical efficiency of 9.1%, repetition rate of 1.1 MHz, and pulse width of 57 ns were achieved with 640 mW pumping. MHz-order repetition rate in Nd:YVO4/Cr4+:YAG Q-switched laser with low pumping (<1 W) is the highest value to the best of our knowledge.  相似文献   

8.
A high-power high-repetition-rate acousto-optically Q-switched 1342 nm laser with double Nd:YVO4 crystals pumped by fiber-coupled laser diodes is presented. The highest output power of 13.7 W was achieved with a total of 42 W pumping power in cw operation, the slope efficiency was measured as 36%, and the optical efficiency was better than 32%. In Q-switchedoperation, the highest pulse repetition rate of 100 kHz was obtained. At 50 kHz repetition rate, the laser exported 11.2 W average output power, with 60 ns average pulse width, ∼5% width stability (RMS) and ∼8% peak-power stability (RMS). At 10 kHz repetition rate, the highest average output power was measured as 6.3 W, single pulse energy was calculated as 0.63 mJ, with pulse width of 19 ns and peak-power higher than 30 kW. Combining the experimental results, we analyze and discuss some problems concerning Nd:YVO4 crystal working at 1,342 nm wavelength. PACS 42.55.-f; 42.55.Xi; 42.60.Gd  相似文献   

9.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

10.
Jimin Yang  Jie Liu  Jingliang He 《Optik》2004,115(11-12):538-540
We report a high-power continuous-wave(cw) diode-pumped efficient 1.34 μm Nd:YVO4 laser. The laser properties of a low Nd3+-doped concentration of the Nd:YVO4 crystal operating at 1.34 μm formed with a simple plane-concave cavity have been demonstrated. With the incident pump power of 22 W, an output power of 8.24 W was obtained, giving an optical conversion efficiency of 37.5% and slope efficiency of 40%. The thermal effects of cw end-pumped solid-state lasers were studied.  相似文献   

11.
We demonstrate the generation of a radially polarized beam by simply inserting an undoped c-cut YVO4 crystal into a Nd:YAG laser cavity. In a hemispherical cavity, the cylindrically symmetric, positive birefringence of the YVO4 crystal extends the stability limit of the cavity length for an extraordinary ray (radial polarization) compared to an ordinary one (azimuthal polarization). By adjusting the cavity length, a radially polarized beam with an output power up to 1 W was selectively obtained. In addition, a higher-order transverse mode was also generated by arranging the cavity design. The method demonstrated in this paper can be readily applied to laser systems with an isotropic laser medium. PACS 42.60.Da; 42.25.Lc; 42.25.Ja  相似文献   

12.
We present for the first time a dual-wavelength laser operation at 1064 and 914 nm in two NdYVO4 crystals. A 879 nm laser diode is used to pump the first Nd:YVO4 crystal emitting at 914 nm, and the second Nd:YVO4 laser emitting at 1064 nm intracavity pumped at 914 nm. A total output power of 4.28 W at the two fundamental wavelengths was achieved at the absorbed pump power of 13.8 W. The M2 values for 914 and 1064 nm lights at the maximum output power were found to be around 1.3 and 1.1, respectively.  相似文献   

13.
Z. Zhao  Y. Dong  C. Liu  M. Hu  Z. Xiang  J. Ge  J. Chen 《Laser Physics》2009,19(11):2073-2076
A effective continuous-wave (CW), high power laser generated using a YVO4/Nd:YVO4 composite crystal is presented. 18.8 W output power in multi-mode has been achieved with a maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 60.26%. In TEM00 mode operation, 15.1 W output power also has been achieved with the maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 47.69%. With a 200 mm focal-length positive lens and using the moving knife-edge method, the beam quality factor is measured to be M2 = 1.2 for TEM00 mode beam.  相似文献   

14.
Z. Zhao  Y. Dong  C. Liu  M. Hu  Z. Xiang  J. Ge  J. Chen 《Laser Physics》2009,19(11):2069-2072
A effective continuous-wave (CW), high power laser generated using a YVO4/Nd:YVO4 composite crystal is presented. 18.8 W output power in multi-mode has been achieved with a maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 60.26%. In TEM00 mode operation, 15.1 W output power also has been achieved with the maximum absorbed pump power of 31.2 W, corresponding to an optical-to-optical efficiency of 47.69%. With a 200 mm focal-length positive lens and using the moving knife-edge method, the beam quality factor is measured to be M2 = 1.2 for TEM00 mode beam.  相似文献   

15.
A Agnesi  L Carrà  R Piccoli  F Pirzio  G Reali 《Optics letters》2012,37(17):3612-3614
An Nd:YVO4 amplifier consisting of two modules end pumped at 808?nm at 30?W total absorbed power has been designed for efficient, diffraction-limited amplification of ultrafast pulses from low-power seeders. We investigated amplification with a 50?mW, 7?ps Nd:YVO4 oscillator, a 2?mW, 15?ps Yb fiber laser, and a 30?mW, 300?fs Nd:glass laser. Output power as high as 9.5?W with 8?ps pulses was achieved with the 250?MHz vanadate seeder, whereas the 20?MHz fiber laser was amplified to 6?W. The femtosecond seeder allowed extracting Fourier-limited 4?ps pulses at 7?W output power. To our knowledge, these are the shortest pulses from any Nd:YVO4 laser device with at least 7?W output power. This suggests a novel approach to exploit the gain bandwidth of vanadate amplifiers with high output power levels. Such amplifier technology promises to offer an interesting alternative to high-power thin disk oscillators at few picoseconds duration, as well as to regenerative amplifiers with low-repetition-rate fiber seeders.  相似文献   

16.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

17.
A compact and efficient 593.5 nm orange-yellow laser is realized using doubly resonant intracavity sum frequency mixing. Two Nd: YVO4 crystals are employed as the gain crystals. In two sub-cavities, 1064 nm radiation from one Nd: YVO4 and 1342 nm radiation from the other Nd: YVO4 are mixed to generate 593.5 nm orange-yellow laser. In the overlapping of the two cavities, sum frequency mixing is achieved in a type I critical phase matching (CPM) LBO crystal. An output power of 3.2 W at the wavelength of 593.5 nm is obtained with total incident pump power of 38 W. The optical to optical conversion efficiency is up to 8.4% and the stability of the output power is better than 2.48% in 8 h. To the best knowledge, this it the highest watt-level laser at 593.5 nm generated by diode end pump all-solid-state technology.  相似文献   

18.
High power passive Q-switching was achieved with a pulse width of 18–32 ns by using a diode-side-pumped Nd:Gd0.6Y0.4VO4 bounce amplifier. An average output power of > 8 W was obtained at a pump power of 39 W. The peak power of the Q-switched output was adjusted within 1.9–5.2 kW by changing the Nd concentration. The mixed vanadates showed significantly higher Q-switching performances in comparison with pure Nd:GdVO4. PACS 42.55.Xi; 42.60.Gd; 42.60.Da  相似文献   

19.
J. An  Sh. Zhao  G. Li  K. Yang  D. Li  J. Wang  M. Li 《Laser Physics》2008,18(11):1312-1315
By using a piece of codoped Nd3+:Cr4+:YAG crystal as a saturable absorber, a laser-diode pumped passively Q-switched Nd:YVO4/YVO4 laser has been realized. The maximum laser output power of 2.452 W has been obtained at the incident pump power of 8.9 W for an 8.8% transmission of the output coupler at 1064 nm, corresponding to a slope efficiency of 30%. The other output laser characteristics of the laser have also been investigated. The laser with a Nd3+:Cr4+:YAG saturable absorber has a lower threshold pump power and a higher slope efficiency compared to that with a similar small-signal transmission of a Cr4+:YAG saturable absorber.  相似文献   

20.
In this paper, a high-power continuous-wave deep blue laser at 447 nm with intracavity tripling was achieved. The deep blue laser at 447 nm is obtained by using a doubly cavity, and type-II critical phase matching KTP crystal for intracavity sum-frequency mixing. Through designing of the cavity, the optimum matching of modes and gains for the two wavelengths was obtained. With incident pump power of 30 W for the Nd:YVO4 crystal and 16 W for the other Nd:YVO4 crystal, the deep blue laser output of 3.5 W at 447 nm with TEM00 mode was obtained, the beam quality M2 value was equal to 1.8 in both horizontal and vertical directions at the maximum output power, and the power stability is better than 3% at the maximum output power during half an hour. The experimental results show that the intracavity sum-frequency mixing by doubly resonant is an effective method for high-power blue laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号